

VERMONT ELECTRIC POWER COMPANY (VELCO) New Haven Operations Facility New Haven, Vermont

Natural Resources Report

November 14, 2019

Prepared for:

VT Transco LLC / VELCO 366 Pinnacle Ridge Road Rutland, VT 05701

Prepared by:

Stantec Consulting Services Inc. 30 Park Drive Topsham, ME 04086

### **Table of Contents**

| 1.0  | INTRODUCTION 1                                                   | I        |
|------|------------------------------------------------------------------|----------|
| 2.0  | PROJECT DESCRIPTION                                              | ?        |
| 3.0  | EXISTING CONDITIONS                                              | <u>)</u> |
| 4.0  | OUTSTANDING RESOURCE WATERS (10 V.S.A. § 1424A(D))               | \$       |
| 5.0  | WATER AND AIR POLLUTION (10 V.S.A. § 6086(A)(1))                 |          |
| 5.1  | AIR AND WATER (§ 6086(A)(1))                                     | 3        |
| 5.2  | HEADWATERS (§ 6086(A)(1)(A)) 4                                   | ŀ        |
| 5.3  | WASTE DISPOSAL (§ 6086(A)(1)(B)) 4                               | ŀ        |
| 5.4  | WATER CONSERVATION (§ 6086(A)(1)(C))                             | 5        |
| 5.5  | FLOODWAYS (§ 6086(A)(1)(D))                                      | 5        |
| 5.6  | STREAMS (§ 6086(A)(1)(E))                                        | 5        |
| 5.7  | SHORELINES (§ 6086(A)(1)(F))7                                    | ,        |
| 5.8  | WETLANDS (§ 6086(A)(1)(G))                                       |          |
| 6.0  | WATER SUPPLY (10 V.S.A. § 6086(A)(2) AND (3))                    | )        |
| 7.0  | SOIL EROSION (10 V.S.A. § 6086(A)(4))                            | )        |
| 8.0  | AESTHETICS, SCENIC AND NATURAL BEAUTY (10 V.S.A. § 6086(A)(8))10 |          |
| 8.1  | RARE AND IRREPLACEABLE NATURAL AREAS (§ 6086(A)(8))10            | )        |
| 8.2  | NECESSARY WILDLIFE HABITAT AND ENDANGERED SPECIES (§             |          |
|      | 6086(A)(8)(A))                                                   | l        |
|      | 8.2.1 Necessary Wildlife Habitat11                               | 1        |
|      | 8.2.2 Endangered Species12                                       | 2        |
| 9.0  | PRIMARY AGRICULTURAL SOILS (10 V.S.A. § 6001)13                  | }        |
| 10.0 | SUMMARY14                                                        | ŀ        |
| 11.0 | REFERENCES15                                                     | 5        |

#### LIST OF TABLES

- Table 1. Summary of Delineated Streams, Proposed New Haven Operations Facility, New Haven, Vermont.
- Table 2. Summary of Delineated Wetlands, Proposed VELCO New Haven Operations Facility, New Haven, Vermont.
- Table 3. RTE Desktop Assessment of Element Occurrences within 2 miles of the Study

   Area, Proposed VELCO New Haven Operations Facility, New Haven, Vermont.
- Table 4. Partial Botanical Inventory Results, 9 August 2018, Proposed VELCO New Haven Operations Facility, New Haven, Vermont.
- Table 5. Summary of NRCS prime farmland classifications within the Study Area,Proposed New Haven Operations Facility, New Haven, Vermont.

#### **LIST OF FIGURES**

- Figure 1. Location Map
- Figure 2. Natural Resources Map
- Figure 3. Federal Emergency Management Agency Flood Insurance Rate Map
- Figure 4. Primary Agricultural Soils Map

#### LIST OF APPENDICES

#### APPENDIX A REPRESENTATIVE SITE PHOTOGRAPHS

- A.1 Representative Land Use Photographs
- A.2 Representative Stream Photographs
- A.3 Representative Wetland Photographs

#### APPENDIX B NNIS TECHNICAL MEMORANDUM

#### APPENDIX C WETLAND REPORTING

- C.1 Wetland Classification Recommendations and Delineation Summary
- C.2 Vermont Wetland Evaluation Forms
- C.3 USACE Wetland Function and Values Forms
- C.4 USACE Wetland Determination Forms

#### APPENDIX D USFWS CORRESPONDENCE

## **1.0 INTRODUCTION**

At the request of Vermont Transco LLC / Vermont Electric Power Company (VT Transco / VELCO; herein referred to as VELCO), Stantec Consulting Services Inc. (Stantec) conducted environmental resource assessments of the proposed New Haven Operations Facility Project (Project) and its surrounding area situated adjacent to VELCO's existing New Haven Substation located at 760 Vermont Route 17 (Main Street) in New Haven, Vermont (Figure 1 – Location Map). Environmental resource assessments conducted by Stantec involved database research, field assessments and delineations, and mapping of an approximately 72-acre area, herein referred to as the Study Area (Figure 2 – Natural Resources Map). This Natural Resources Report (NRR) summarizes results of those activities, observations, and findings. The purpose of this NRR is to serve as a supporting technical document for a petition by VELCO to the Vermont Public Utility Commission (Commission) for a Certificate of Public Good under Section 30 V.S.A. § 248 (Section 248). The environmental criteria of Section 248 addressed in this NRR to support that petition includes the following:

- Outstanding Resource Waters (10 V.S.A. § 1424a(d))
  - Air and Water Pollution (10 V.S.A. § 6086(a)(1))
    - Headwaters (§ 6086(a)(1)(Å))
      - Waste Disposal (§ 6086(a)(1)(B))
      - Water Conservation (§ 6086(a)(1)(C))
      - Floodways (§ 6086(a)(1)(D))
      - Streams (§ 6086(a)(1)(E))
      - Shorelines (§ 6086(a)(1)(F))
      - Wetlands (§ 6086(a)(1)(G))
- Water Supply (10 V.S.A. § 6086(a)(2) and (3))
- Soil Erosion (10 V.S.A. § 6086(a)(4))
- Aesthetics, Scenic and Natural Beauty (10 V.S.A. § 6086(a)(8))
  - Rare and Irreplaceable Natural Areas (§ 6086(a)(8))
  - Necessary Wildlife Habitat and Endangered Species (§ 6086(a)(8)(A))
- Primary Agricultural Soils (10 V.S.A. § 6001)

Database research, field assessments and delineations, and mapping completed by Stantec to date include: water resource delineations (wetlands, streams, potential vernal pools [PVP], and other waters of the United States); significant natural community surveys; necessary wildlife habitat surveys; rare, threatened or endangered (RTE) species assessments; and non-native invasive species (NNIS) surveys. Database research involved use of online resources, including: Vermont Agency of Natural Resources (VTANR) Atlas (2019a), Vermont Geodata Portal (VCGI 2018), Natural Resource Conservation Service (NRCS 2018), Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRMs) (FEMA 2018), and previous natural resource delineation data provided by VELCO.

### 2.0 PROJECT DESCRIPTION

VELCO is seeking authorization from the Commission to construct the proposed New Haven Operations Facility Project. The Project will generally consist of an 18,000-square-foot (sq ft), two-story building (Main Building) located on approximately 5 acres of a larger 100-acre parcel, setback on the south side of Vermont Route 17 near VELCO's existing New Haven substation in New Haven, Vermont. The Main Building has been designed to resemble a traditional Vermont barn with dark red matte finish to blend in with the rural surroundings of the site. Consistent with VELCO's vision of a sustainable Vermont, the building design will incorporate energy efficiency and environmental sustainability principles to the greatest extent economically feasible. Key exterior Project components include:

- A back-up generator building to the immediate east of the Main Building;
- Mechanical equipment surrounded by a retaining wall located on the western side of the Main Building;
- Solar panels installed on the roof of the Main Building for onsite energy consumption;
- An eight-ft-tall, chain link security fence surrounding the Main Building, the generators, and the mechanical equipment;
- Site access provided from Vermont Route 17 via an existing driveway extending to a new parking area; and
- Two redundant and independent three-phase electric distribution services with power transformers supplied from Green Mountain Power Corporation.

The main purpose of the Project is to serve as VELCO's Backup Control Center for operating the transmission system. In addition, the Project will include a Secondary Data Center, a system operator training facility, an emergency response center, and general conference and office space for utility-related meeting.

In addition to the building facility, the Project would also include supporting wastewater and potable water systems that are designed to adequately meet the needs of the facility. A stormwater management system would be installed to manage stormwater runoff from impervious surfaces resulting from site development. Lastly, a landscaping plan including the planting of native species, would be implemented to enhance aesthetics and further blend the facility into the existing rural surroundings, while maintaining connections to the natural ecology of the area. Combined, these areas comprise an 9.8-acre limit of disturbance for construction and installation of the building and supporting infrastructure, referred to herein as the "Project Site".

### 3.0 EXISTING CONDITIONS

The 72-acre Study Area assessed by Stantec for the Project is located in Addison County in central New Haven on the southern side of Vermont Route 17 (Main Street), approximately 1,900 ft west of the intersection of Vermont Routes 17 and 7 (Figure 1 – Location Map). The Study Area is bordered by approximately 1,600 ft of road frontage along Vermont Route 17 to the north; an access road and open space to the west, the existing VELCO New Haven Substation and open space to the south, and open

November 14, 2019

meadows and agricultural land to the east (Figure 2 – Natural Resources Map). The approximately 9.8acre Project Site is located within the central portion of the Study Area (Figure 2 – Natural Resources Map).

Land use within the Study Area is a combination of developed and undeveloped areas. Developed areas consist of an existing substation, the former new haven substation site (to be relocated prior to construction of the Project), and access driveways and parking areas. Land cover within the undeveloped portions of the Study Area is predominantly comprised of open meadow with a few tree rows extending through the center and along the western, southern, and southeastern boundaries (Appendix A.1 – Representative Land Use Photographs). The tree rows and edge habitat comprise a high density of NNIS occurrences, with further detail summarized in the NNIS Technical Memorandum (Appendix B). Surrounding land use consists predominantly of agriculture (cropland and pastures), with narrow forested corridors along borders that extend through the Study Area. The Study Area is generally located within the Champlain Valley biophysical region and subwatershed (HU12) Headwaters Little Otter Creek 041504080401.

## 4.0 OUTSTANDING RESOURCE WATERS (10 V.S.A. § 1424a(d))

The following four waterways have been classified by the Vermont Natural Resources Board (VTNRB) as Outstanding Resource Waters (ORWs; VTNRB 2013):

- 1. Batten Kill River, Towns of East Dorset and Arlington
- 2. Pike's Falls/Ball Mountain, Town of Jamaica
- 3. Poultney River, Towns of Poultney and Fair Haven
- 4. Great Falls, Ompompanoosuc River, Town of Thetford

Stantec completed a database review of the Vermont Geodata Portal (VCGI 2018) to assess proximity of these ORWs to the Study Area and determined that there are no ORWs located within the boundaries of the Study Area. The nearest ORW is the Poultney River, which is approximately 35 miles to the southwest of the Study Area.

### 5.0 WATER AND AIR POLLUTION (10 V.S.A. § 6086(a)(1))

### 5.1 AIR AND WATER (§ 6086(a)(1))

In accordance with 10 V.S.A § 6086(a)(1), demonstration is to be made that the development will not result in undue air or water pollution. Based on review of the proposed Project design, the Project will not have process emissions or burning of forest or construction debris or fire pits of any kind. Proposed construction activities will involve implementation of erosion prevention and sediment control (EPSC) measures to mitigate potential sources of air and water pollution as it relates to dust suppression, equipment washing during construction, and/or erosion and sedimentation. EPSC measures will follow

the Vermont Standards and Specifications for Erosion Prevention and Sediment Control (VTANR 2019b) and the VELCO Environmental Guidance Manual (VELCO 2012). Construction dust will be controlled with water and/or dust suppressants. Long-term operations of the facility will rely on rooftop solar panels and potential geothermal heating sources that are designed to maximize efficiency, while minimizing negative environmental impacts such as air and water pollution. Therefore, based on combined approaches, no undue adverse impacts to air or water are anticipated.

### 5.2 HEADWATERS (§ 6086(a)(1)(A))

In accordance with 10 V.S.A. § 6086(a)(1)(A), demonstration is to be made that a project meets regulations regarding reduction of the quality of ground or surface waters flowing through or upon lands which are:

- i. headwaters or watersheds characterized by steep slopes and shallow soils; or
- ii. drainage areas of 20 square miles or less; or
- iii. above 1,500 feet elevation; or
- iv. watersheds of public water supplies designated by VTANR; or
- v. areas supplying significant amounts of recharge water to aquifers.

Stantec completed a database review of soils data from the NRCS and the VTANR Atlas and reviewed topographic maps, watershed maps, and public water supply protection area information from the VTANR Atlas to assess whether the Study Area is located within headwaters as defined above. Based on this information, it was determined that the Study Area is: (a) not characterized by steep slopes and shallow soils, (b) not positioned above 1,500 ft, (c) not a watershed designated by VTANR as a public water supply, and (d) not an area supplying significant amounts of recharge water to aquifers. The Study Area is within the subwatershed (Hydraulic Unit 12 [HU12] – Subbasin) headwaters of Little Otter Creek, which has a total subwatershed area of 117.6 square miles (greater than 20 square miles). It is also located within the Greater Lake Champlain Drainage Basin (Otter Creek Basin, Water Quality Management Plan, May 31, 2012). Based on this information, it was determined that the Study Area is not located within headwaters as defined above and, therefore, the Project will not reduce the quality of ground or surface waters flowing through or upon lands as defined above.

### 5.3 WASTE DISPOSAL (§ 6086(a)(1)(B))

In accordance with 10 V.S.A. § 6086(a)(1)(B), demonstration is to be made that the development will not involve the injection of waste material or any harmful or toxic substances into groundwater or wells. For wastewater, the Project proposes an expansion of the existing mound system, which is located to the west of the former new haven substation site, from 60 gallons per day (gpd) to 200 gpd. For stormwater runoff, the Project proposes an operational-phase stormwater management system that is in compliance with conditions of Vermont Department of Environmental Conservation (VTDEC) General Permit 3-9015 (or new General Permit 3-9050, if applicable) and the Vermont Stormwater Management Manual and includes green stormwater infrastructure. During construction, waste material will be properly disposed of in an appropriate and approved manner, as dictated by the type of material and/or equipment to be discarded. Portable toilets to be utilized during construction will be provided by an authorized supplier who will deliver, maintain, and remove them as dictated by the Project schedule. Construction dust will be

controlled with water and/or dust suppressants. As such, the Project is not proposing to inject waste material or any harmful or toxic substances into groundwater or wells.

### 5.4 WATER CONSERVATION (§ 6086(a)(1)(C))

In accordance with 10 V.S.A. § 6086(a)(1)(C), demonstration is to be made that the design has considered water conservation, incorporates multiple use or recycling where technically and economically practical, utilizes the best available technology for such applications, and provides for continued efficient operation of these systems. As proposed, the building design will incorporate energy efficiency and environmental sustainability, with the intent of receiving Leadership in Energy and Environmental Design (LEED) certification from the U.S Green Building Council. As such, it is a goal of the Project to demonstrate water conservation, incorporate use or recycling where technically and economically practical, utilize the best available technology for such applications, and provide for continued efficient operation of these systems.

### 5.5 FLOODWAYS (§ 6086(a)(1)(D))

Pursuant to 10 V.S.A. § 6086(a)(1)(D), demonstration is to be made that:

- i. The development of lands within a floodway will not restrict or divert the flow of flood waters, and endanger the health, welfare or safety of public or of riparian owners during flooding; and
- ii. The development within a floodway fringe will not significantly increase the peak discharge of the river or stream within or downstream from the area of development and endanger the health, welfare or safety of the public or of riparian owners during flooding.

Stantec completed an assessment of delineated watercourses within the Study Area to determine if any meet the definition of a "floodway", which is "a channel of a watercourse which is expected to flood on an average of at least once every 100 years and the adjacent land areas which are required to carry and discharge the flood of the watercourse" or a "floodway fringe", which is "an area which is outside a floodway and is flooded with an average frequency of once or more in each 100 years." This assessment was supported by review of available FEMA FIRMs (Figure 3 – New Haven, VT; April 3, 1978), review of the "Little Otter Creek Watershed: Phase 2 Stream Geomorphic Assessment" (South Mountain Research and Consulting 2011), and results of a field delineation and assessment of stream features conducted by Stantec on October 11 and November 1, 2017 (see Section 5.6 of this report for a summary of findings). Based on review of this information, it was determined that the Study Area does not contain a floodway or floodway fringe nor will the Project be constructed within a floodway or floodway fringe.

### 5.6 STREAMS (§ 6086(a)(1)(E))

In accordance with 10 V.S.A. § 6086(a)(1)(E), demonstration is to be made that the development of land on or adjacent to the banks of a stream will, whenever feasible, maintain the natural condition of the stream and will not endanger the health, safety, or welfare of the public or of adjoining landowners. Stream is defined as "a current of water which is above an elevation of 1,500 feet above sea level or which flows at any time at a rate of less than 1.5 cubic feet per second."

November 14, 2019

Stantec conducted a field delineation and assessment of stream features within the Study Area on October 11 and November 1, 2017. When conducting these assessments, Stantec uses federal delineation procedures (USACE 2005) to identify streams and other waters of the United States. If there are streams with a channel wider than 6 ft, each side at the Top-of-Bank is delineated according to guidelines in the Guidance for Agency Act 250 and Section 248 Comments Regarding Riparian Buffers put forth by VTANR (2005). Streams with channel sizes less than 6 ft wide and non-jurisdictional drainage features are delineated along each features' center line. Stream classification and ordinary high water (OHW) width are also assessed, according to methods detailed in the "Regulatory Guidance Letter: Subject – Ordinary High Water Mark Identification" (USACE 2005). Each OHW width channel segment is assessed as the average of measurements of OHW widths taken at regular intervals along the surveyed portion of the watercourse. Flow regimes are preliminarily classified as perennial, intermittent, or ephemeral based on qualitative observations of instream hydrology indicators and geomorphic traits at the time of observation. All field observations are used to assign Rosgen stream classifications to each stream feature (Rosgen 1996). Streams are coded by the town name ("NH" for New Haven) and feature number (e.g., NH-204). Stream points are collected using Trimble® Global Positioning System (GPS) receivers capable of sub-meter accuracy.

Based on field investigations conducted for stream features within the Study Area, Stantec delineated one ephemeral stream segment (NH-204) located along the southern boundary of the Project Site, where it connects two segments of wetland NH-203 (Figure 2 – Natural Resources Map). Stream NH-204 is a Class B water located within the Little Otter Creek sub-drainage basin, as defined by the VWQS (VTANR 2016b). It is approximately 71 linear ft, with an approximate OHW of 5 ft (355 sq ft). For more detailed information of stream NH-204, see the stream summary table (Table 1 – Summary of Delineated Streams) and representative photographs (Appendix A.2 – Representative Stream Photographs). Based on field assessments and desktop review of the VTANR Atlas, there were no major water courses or impaired waters identified within the Study Area.

The thoughtful process involved in siting of the building location and its supporting infrastructure (parking, emergency access, utilities, stormwater management, etc.) considered many variables, including avoidance and minimization of impacts to natural resource areas, In the end, it was determined that to minimize impacts to natural resources to the extent possible, the building and supporting infrastructure would need to be located: (1) off of the existing access driveway to avoid creation of a new driveway, (2) in an area that allows redevelopment of the former New Haven substation site, and (3) in an area that is outside of mapped Class II wetland and 50-ft wetland buffer areas (see Section 5.8 of this report). This resulted in a Project footprint as depicted by the "Project Site" (or Limits of Disturbance ["LOD"]) as shown in Figure 2 – Natural Resources Map. As shown, the mapped ephemeral stream will be permanently impacted as a result of grading and filling to be conducted during Project construction. As an ephemeral stream, this watercourse is not regulated under VTANR rules although it is currently assumed to be jurisdictional under USACE regulations and, therefore, will be accounted for in the Section 404 permitting process. As a small, isolated ephemeral stream, permanent impacts to this feature are not unduly adverse.

### 5.7 SHORELINES (§ 6086(a)(1)(F))

In accordance with 10 V.S.A. § 6086(a)(1)(F), demonstration is to be made that the development of shorelines will, to the extent possible:

- i. retain the shoreline and the waters in their natural condition;
- ii. allow continued access to the waters and the recreational opportunities provided by the waters;
- iii. retain or provide vegetation which will screen the development or subdivision from the waters, and;
- iv. stabilize the bank from erosion as necessary with vegetation cover.

To address these five subcriteria, Stantec reviewed the definition of "shoreline" in the context of the delineated watercourses to determine whether or not a "shoreline" was present within the Study Area. Shoreline is defined as "the land adjacent to the waters of lakes, ponds, reservoirs and rivers. Shorelines shall include the land between the mean high water mark and the mean low water mark of such surface waters." Based on review of the delineated stream (NH-204), it was determined that a shoreline as defined above was not observed or delineated within the Study Area and, therefore, development of the Project area will not result in impacts to a shoreline.

### 5.8 WETLANDS (§ 6086(a)(1)(G))

In accordance with 10 V.S.A. § 6086(a)(1)(G), projects are required to comply with the Vermont Wetland Rules (VWR) put forth by the VTANR (VTANR 2018). Projects are to demonstrate that developments or subdivision will meet the standards set forth by the Vermont Natural Resources Board as they pertain to significant wetlands. Significant wetlands and their respective buffers are protected under the VWR (VTANR 2018) and defined within as "any Class I or Class II wetland that merits protection under these rules, either alone or in conjunction with other wetlands, based upon an evaluation of the extent to which it serves one or more of the functions and values pursuant to 10 V.S.A. § 905b(18)(A) and section 5 [of] these rules." The USACE Section 404 permit program and the VTDEC Section 401 Water Quality Certification also review impacts to Class III wetland impacts, which are not regulated per to 10 V.S.A § 6086(a)(1)(G).

Stantec performed wetland delineations within the Study Area on October 11, 2017, November 1, 2017, and July 18, 2019. Wetland delineations were conducted following the U.S. Army Corps of Engineers *Wetlands Delineation Manual* (USACE 1987), the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region Routine Determination Method* (Version 2.0; USACE 2012), and pursuant to the VWR Section 3.2 Methodology for Identifying Wetlands. Wetland community classifications were assigned utilizing the *Classification of Wetlands and Deepwater Habitats of the United States* (Federal Geographic Data Committee 2013). The functions and values of each wetland were qualitatively evaluated based on the on-site observations and field notes in accordance with the VWR Section 5 (Functional Criteria for Evaluating a Wetland's Significance) and the USACE Highway Methodology (VTANR 2018, USACE 1993; Appendix C.2 – Vermont Wetland Evaluation Forms; Appendix C.3 – USACE Wetland Function and Values Forms). Data was collected on dominant vegetation, evidence of hydrology, and hydric soil criteria to complete USACE Wetland Determination forms. USACE Wetland Determination forms were also completed with paired upland plots to document

November 14, 2019

representative wetland boundaries (Appendix C.4 – USACE Wetland Determination Forms). Representative photographs were taken of each delineated wetland (Appendix A.3 – Representative Wetland Photographs). As with streams, wetland identifiers were coded by town name ("NH" for New Haven) and feature number (e.g., NH-008). Wetland boundaries were located using Trimble® Global Positioning System (GPS) receivers capable of sub-meter accuracy but were not demarcated with flagging or by other means during the delineation per VELCO's requests.

Based on the field assessments conducted by Stantec, seven wetland features were delineated within the Study Area: NH-008, NH-009, NH-010, NH-201, NH-202, NH-203, and BUCC-01 (Figure 2 – Natural Resources Map). Of these seven delineated wetland features, NH-202 extends outside of the Study Area. A Wetland Summary table (Table 2 – Summary of Delineated Wetlands) lists the delineated wetland identification information along with characteristics needed to classify wetlands as Class I, II, or III pursuant to 2018 VWR Section 5 guidelines. Stantec proposed a wetland classification for each delineated wetland based on review of relevant field data (e.g., field notes, Vermont Wetland Evaluation Form), desktop analysis of additional resources (e.g., aerial maps, topography, Vermont Significant Wetland Inventory [VSWI; VTANR 2019a], existing delineation data), and professional judgement. Any delineated wetland that overlapped or connected with a VSWI wetland was automatically considered a Class II wetland. Wetland boundaries were field verified by the VTANR Wetlands Program during site visits conducted on October 11, 2018, and October 8, 2019<sup>1</sup>. The results of these site visits confirmed that two of the delineated wetlands (NH-202 and BUCC-01) are Class II and the remaining five are Class III (Appendix C.1 – Wetland Classification Recommendation and VTANR Site Visit Correspondence). There are no Class I wetlands within the Study Area. The two Class II wetlands were found to possess one or more of the following VWR Section 5 functions:

- 5.1 Water Storage for Flood Water and Storm Runoff (NH-202 & BUCC-01)
- 5.2 Surface and Ground Water Protection (NH-202 & BUCC-01)
- 5.4 Wildlife Habitat (BUCC-01)
- 5.10 Erosion Control through Binding and Stabilizing the Soil (BUCC-01)

Based on review of the Project design, there are no proposed temporary or permanent impacts to Class II wetland BUCC-01 or Class II wetland NH-202 (Figure 2 – Natural Resources Map). Although not under VTANR jurisdiction, there is approximately 0.34 acres (14,915 sq ft) of permanent impact proposed for the Class III wetland NH-203 due to building grading and construction. In addition, there is approximately 0.02 acres (936 sq ft) of temporary and permanent impact proposed for Class III wetland NH-009, resulting from expansion of the existing mound system (Figure 2 – Natural Resources Map). The Class III wetland falls under USACE jurisdiction and, therefore, requires coverage under a Section 404 General Permit (GP) for allowed impacts. Based on USACE guidelines, compensatory mitigation may be required to account for impacts to this Class III wetland. Consultation with the USACE is anticipated to be conducted during fall/winter 2019.

Similar to the siting discussion in Section 5.6 of this report, thoughtful consideration was given to avoiding and/or minimizing potential impacts to natural resource areas, including wetlands and their buffer area (in

<sup>&</sup>lt;sup>1</sup> Attendees of the October 11, 2018, site visit included Zapata Courage, VTANR District Wetland Ecologist; Polly Harris, Stantec Wetland Scientist; and Jake Reed, VELCO Environmental Representative. Attendees of the October 8, 2019, site visit included Zapata Courage and Jake Reed.

November 14, 2019

the case of Class II wetland BUCC-01). Utilization of the existing access driveway, redevelopment of the former new haven substation site, and positioning of the site footprint outside of the Class II BUCC-01 wetland and its buffer area have achieved this approach. Therefore, it has been determined that there will be no undue adverse impacts to wetlands as a result of the Project.

Stantec conducted PVP assessments during the wetland delineations in accordance with definitions of vernal pools provided by the USACE (2013), Thompson and Sorenson (2005), and the VWR. Where PVPs are identified, formal vernal pool surveys are to be completed during the spring (e.g., April and May) when obligate vernal pool species such as wood frogs (*Lithobates sylvaticus*) or spotted salamanders (*Ambystoma maculatum*) are present and breeding. By definition, a vernal pool is a temporary to semi-permanent body of water occurring in a shallow depression that typically fills with water during the spring or fall and may dry during the summer. Vernal pools have no permanent inlet or outlet and no viable populations of predatory fish. Natural and artificially created PVPs are identified based on physical characteristics of the pools such as the presence of standing water or water marks within a confined basin. Where PVPs are identified, data is collected on origin (e.g., natural or artificially created), approximate size, and hydrology. A single GPS point is collected to identify the approximate location of the PVP. Representative photographs of the PVP and the surrounding landscape are also collected for future reference. For the assessment conducted by Stantec, no PVPs were identified within the Study Area; therefore, there will be no undue adverse impacts to vernal pools as a result of the Project.

## 6.0 WATER SUPPLY (10 V.S.A. § 6086(a)(2) AND (3))

In accordance with 10 V.S.A. § 6086(a)(2) and (3), demonstration is to be made that the development has sufficient water to meet foreseeable needs. Based on the proposed Project design, a new well will be installed on the east side of the proposed building to supply potable water. This new well is anticipated to have adequate capacity to meet potable water needs during building operation. Therefore, it is concluded that the development has sufficient water to meet foreseeable needs.

## 7.0 SOIL EROSION (10 V.S.A. § 6086(a)(4))

In accordance with 10 V.S.A. § 6086(a)(4), demonstration is to be made that the project will not cause unreasonable soil erosion or reduction in the capacity of the land to hold water. The NRCS has classified each soil series in terms of its potential erodibility ("K-factors"). Based on review of the NRCS soil survey, the majority (approximately 64%) of NRCS-mapped soils within the 72-acre Study Area consist of Vergennes clay, which has an erodibility rating (or "K factor") of 0.49. The primary underlying soils within the 9.8-acre Project Site are listed in the following table.

| NRCS Soil Name and Symbol          | Average<br>Percent Slope | K-Factor<br>(Erodibility<br>Rating) | Total Area within<br>Project Site (acres) |
|------------------------------------|--------------------------|-------------------------------------|-------------------------------------------|
| Vergennes clay (VgB)               | 2 to 6                   | 0.49                                | 7.1                                       |
| Nellis loam (NeB)                  | 3 to 8                   | 0.28                                | 1.5                                       |
| Melrose fine sandy loam (MrA)      | 0 to 3                   | 0.17                                | 0.80                                      |
| Nellis loam, extremely stony (NsC) | 3 to 15                  | 0.28                                | 0.25                                      |
| Raynham silt loam (RaB)            | 0 to 6                   | 0.37                                | 0.09                                      |
| Nellis loam (NeC)                  | 8 to 15%                 | 0.28                                | 0.05                                      |

According to the Vermont Standards and Specifications for Erosion Prevention and Sediment Control (VTANR 2019b), a "medium" erodibility ranking are those soils with K factors from 0.17 to 0.36; and a "high" erodibility ranking are those soils with K factors that are greater than 0.37. Based on this information, underlying soils within the Project Site have a combination of medium to high erodibility ratings (or erodibility potential). Therefore, the Project will implement an EPSC Plan in accordance with conditions of the VTDEC General Permit 3-9020, the Vermont Standards and Specifications for Erosion Prevention and Sediment Control (VTANR 2019b), and the VELCO Environmental Guidance Manual (VELCO 2012), with particular attention to those EPSC measures that are suitable for erodibility potentials identified for the types of soils classified for this site. Following construction, areas of exposed soil that are otherwise undeveloped will be revegetated to minimize any potential of erosion and sedimentation. Furthermore, attention will be given during construction to avoid over-compaction of areas that are to remain undeveloped and restored as vegetated areas. Based on this approach, the Project will not cause unreasonable soil erosion or reduction in the capacity of the land to hold water.

# 8.0 AESTHETICS, SCENIC AND NATURAL BEAUTY (10 V.S.A. § 6086(a)(8))

### 8.1 RARE AND IRREPLACEABLE NATURAL AREAS (§ 6086(a)(8))

In accordance with 10 V.S.A § 6086(a)(8), the project "will not have an undue adverse effect on the scenic or natural beauty of the area, aesthetics, historic sites or rare or irreplaceable natural areas." Rare and Irreplaceable Natural Areas (RINA) as determined through a four-part test are deemed so under Criterion 8 of Act 250 (as amended by Section 248) that considers the natural area's size, quality, fragmentation, and any adverse effects a project might have on the natural area. Surveys for RINA sites consisted of desktop review of any existing element occurrences (EO) within a 2-mile radius of the Study Area to refine target communities prior to field surveys. Each natural community EO is given an overall rating ranging from A (excellent) to D (poor) based on the current condition, landscape context, and size. Natural communities are assigned a state rank that describes a community's rarity within Vermont ranging from S1 (extremely rare) to S5 (common). This information was obtained from VTANR Atlas (2019a). According to VTANR Guidelines for the Conservation and Protection of State-Significant Natural Communities (2004), a natural area must have a combination of quality and state rarity rankings to be

November 14, 2019

considered significant: S1 or S2 community types with an EO Rank of A, B, or C; S3 or S4 community types with an EO Rank of A or B; or S5 community types with an EO Rank of A.

Based on a desktop analysis conducted by Stantec, three significant natural community EOs were identified as being located within a 2-mile radius of the Study Area although no EOs were identified within a 1-mile radius of the Study Area. The three that are located within a 2-mile radius are:

- One EO of a significant Mesic Clayplain forest natural community; State-ranked S2;
- One EO of a significant Northern White Cedar swamp natural community; State-ranked S3; and
- One EO of a significant Red Maple Black Ash seepage swamp natural community; Stateranked S4.

Field data was collected on discernable ecological communities that exhibited minimal anthropogenic disturbances within the Study Area. The natural communities described in Thompson and Sorensen (2005) informed field efforts and defined specific species assemblages found within distinct natural communities. The Study Area and adjacent land primarily consists of land dominated by human activity. As described above, the Study Area is bordered by a state roadway, the existing VELCO New Haven Substation, and access roads. The Study Area is predominantly comprised of mowed fields with tree hedge rows extending through the center and along the western, southern, and southeastern boundaries. At the eastern end of the Study Area a shallow emergent marsh community occurs – documented during wetland delineations as wetland NH-202. The shallow emergent marsh community, State-ranked S4, found within the Study Area was dominated reed canary grass (Phalaris arundinaceae) and actively utilized for agricultural grazing land along the eastern wetland edge. Due to current land use practices and the monotypic plant community, this occurrence would likely be given a rank of C/D and. Therefore. not meet the threshold for state significance. The one scrub-shrub wetland, NH-009, located within the Study Area does not meet natural assemblage definitions as is dominated by Morrow's honeysuckle (Lonicera morrowii), gray dogwood (Cornus racemosa) and possumhaw (Viburnum nudum). During 2018 RTE and botanical surveys, no state significant natural communities were located within the Study Area. Several NNIS occurrences were located during field surveys, as reported in further detail in a separate technical memorandum (Appendix B - NNIS Technical Memorandum). Based on desktop analysis and field surveys, no RINAs were present within the Study Area.

# 8.2 NECESSARY WILDLIFE HABITAT AND ENDANGERED SPECIES (§ 6086(a)(8)(A))

### 8.2.1 Necessary Wildlife Habitat

In accordance with 10 V.S.A § 6086(a)(8)(A), the project shall not "destroy or significantly imperil necessary wildlife habitat or any endangered species." Necessary wildlife habitat includes deer wintering areas (DWA), black bear mast stands, and black bear wetland feeding areas. Prior to conducting field surveys, Stantec conducted a desktop review of the VTANR Atlas (VTANR 2019a) to identify occurrences of necessary wildlife habitat previously documented within the vicinity of the Study Area. Additional field data was collected concurrent with the wetland delineations to augment the desktop review and to further evaluate potential necessary wildlife habitat.

November 14, 2019

DWA consist of mature softwood dominated forest stands that provide white-tailed deer (*Odocoileus virginianus*) with reduced snow depth and protection from heat loss and harsh winter elements. Based on the database review, there are no mapped DWA within the Study Area. The nearest DWA is located more than 0.25 miles to the south of the Study Area. This DWA (ID – DWA3148) was not field verified due to its distance from the site.

Black bear mast stands consist of forest stands dominated by American beech (*Fagus grandifolia*) or oak species (*Quercus sp.*), which represent a fall food source for black bear (*Ursa americanus*). Mapped black bear wetlands represent a crucial spring food source for black bears when the wetlands are the first available forage in early spring. Based on the database review, there are no black bear mast stands or black bear wetlands within 3 miles of the Study Area. The closest mast stand is located approximately 3.8 miles to the north of the Study Area (ID – FMO49) and the nearest black bear wetland is approximately 11.7 miles to the northeast (ID – 4W11).

In summary, based on review and evaluation of database resources and 2017–2019 field surveys, the conclusion is that the Study Area does not contain NWH.

#### 8.2.2 Endangered Species

The evaluation of RTE species and their associated habitats were based on the listed plants and animals pursuant to Vermont Endangered Species rules (10 V.S.A. § 123) and those protected under the Federal Endangered Species Act (ESA). Prior to completing field surveys, a desktop assessment was completed by reviewing existing EO RTE data from the VTANR Atlas within a 1-mile radius of the Study Area. The desktop assessment was used to target field surveys within habitats that may support RTE plant populations. Results of the desktop assessment yielded no existing RTE occurrences within the Study Area. Six existing plant RTE occurrences and one existing animal RTE occurrences were located within a 1-mile radius of the Study Area. Information on these known occurrences including species name, State rarity rank, and habitat information are included in Table 3: RTE Desktop Assessment. Site and habitat information from the 2017 wetland delineation effort were used to help target potential RTE species that may occur within the Study Area. Of the known state-listed (Threatened or Endangered) adjacent RTE occurrences, Greene's rush (*Juncus greenei*) and short-styled snakeroot (*Sanicula canadensis var. canadensis*) were targeted during the 2018 botanical survey as they have previously been document to occur in habitats present within the Study Area (sandy road shoulders and mesic forests, respectively).

The RTE and botanical field survey was conducted on August 9, 2018. This timing of the survey coincided with guidelines set forth by the Vermont Natural Heritage Inventory (NHI) and was conducted according to NHI guidance (VTANR 2016a). An inventory of all observed plant species within the Study area including notations of dominant species, State-rarity rank, and NNIS status are included in Table 4: Partial Botanical Inventory Results. Based on the desktop review and 2017/2018 field surveys, no RTE plants/animals were identified within the Study Area. The Study Area and adjacent land primarily consists of land dominated by anthropogenic disturbances, agriculture activity, and NNIS species occurrences. Specifically, no occurrences of the two state-listed RTE species, Greene's rush and short-styled snakeroot, were located within the Study Area. Based on the above-mentioned survey efforts, the conclusion is that the Study Area does not contain any populations of state or federally listed plant

November 14, 2019

species. Additionally, no incidental sightings of any RTE or uncommon animal species were reported during 2017/2018 field surveys of the Study Area.

Based on a database inquiry of the U.S. Fish & Wildlife Service (USFWS) Information for Planning and Consultation (IPaC) database, two federally listed species have known ranges that overlap with the Study Area: Indiana bat (Myotis sodalis; Federally Endangered) and the northern long-eared bat (Myotis septrentrionalis; Federally Threatened) (USFWS 2019). The Study Area has no critical habitat for northern long-eared bat or Indiana bat, based on IPaC review. There are no known winter hibernaculum or occupied maternity roost trees for either species within 1 mile of the Study Area according to the VTANR Atlas. The Study Area would be considered "Potential Summer Habitat" for the northern longeared bat based on Vermont Fish and Wildlife (VTFWD) guidance (Regulatory Review Guidance for Protection Northern Long-eared Bats and Their Habitats; VTFWD 2017); and, the Town of New Haven is considered Indiana bat summer habitat (N. Dodge/VTFWD, personal communication, October 25, 2019). However, pursuant to the federal northern long-eared bat 4(d) rule (USFWS 2016) and VTFWD guidance, we anticipate no time of year restrictions for tree clearing activities for northern long-eared bat because there are no known hibernacula or roosts within 1 mile of the Project<sup>2</sup>, and the amount of forest habitat to be cleared is negligible (less than 1.0% of forested habitat within a 1-mile radius of the Project). No time of year restrictions or mitigation related to Indiana bats is anticipated to be required for the Project because there are no suitable roosts in the Project area with tree diameters at breast height generally less than eight inches. Further, the hedgerows where tree clearing activities will occur are relatively isolated in agricultural fields and provide low guality habitat. The amount of tree clearing will be negligible relative to the forest habitat in the surrounding area The Project will be implementing an aesthetic mitigation plan with native tree plantings to be made at the periphery of the Project Site to replace portions of the forested hedgerow that are to be cleared during Project construction.

In summary, there are no undue adverse impacts on RTE plant or animal species anticipated as a result of the Project.

### 9.0 PRIMARY AGRICULTURAL SOILS (10 V.S.A. § 6001)

In accordance with 10 V.S.A § 6001(15), as amended by Act 250, demonstration is to be made that a project meets regulations regarding Primary Agricultural Soils (PAS) as identified by the NRCS of the U.S. Department of Agriculture (USDA), where soils are rated by NRCS as Prime, Statewide, or Local farmland of Statewide Importance. As mapped by NRCS, 94% (67.5 ac) of the soils within the 72-acre Study Area meet the criteria for Prime and Statewide PAS designations (Figure 4 – Primary Agricultural Soils Map). Within the 9.8-acre Project Site, approximately 97% (9.5 acres) meets the criteria of PAS as mapped by NRCS.

Proposed activities within the 9.5-acre area would include temporary and permanent impacts to soils, depending on the nature of the activity. For example, installation of an underground utility line would

<sup>&</sup>lt;sup>2</sup> The USFWS 4(d) rule indicates a distance of 150 ft from known occupied roost trees and a 0.25-mile distance from hibernacula, while the VTFWD guidance indicates a distance of 0.25 miles in the Special Management Zone 1 and a 1-mile distance in the Special Management Zone 2 from known roost trees or hibernacula.

November 14, 2019

constitute a temporary impact, while conversion of open space to a building footprint would constitute a permanent impact. Table 5 summarizes proposed temporary and permanent impacts to existing open space that has been mapped as PAS, as well as proposed impacts to existing previously developed areas that are non-functioning PAS areas, within the 9.5-acre area.

Based on review of this information, it is anticipated that Project construction will result in temporary (4.7 acres) and permanent impacts (3.5 acres), and the redevelopment (1.4 acres) of approximately 9.5 acres of NRCS-mapped PAS. Overall, the project design has been dictated by minimizing potential impacts to resource areas, including PAS. The project design specifically included the reuse of existing access roads, and the redevelopment of an existing gravel yard that was formerly the old New Haven substation.

Therefore, it has been determined that the proposed Project will not result in undue adverse impact to PAS. Consultation with the Vermont Agency of Agriculture, Food and Markets (VTAAFM) is underway to determine if any mitigation or specific soil handling procedures may be required for the Project.

### **10.0 SUMMARY**

The proposed Project is anticipated to have no undue adverse impacts on criteria listed above. There will be temporary and permanent impacts to an ephemeral stream (see Section 5.6), two Class III wetlands (see Section 5.8), tree clearing (potential bat habitat; see Section 8.2.2), and primary agricultural soils (see section 9.0). As described in Section 5.8, the Project will seek necessary permits and approvals prior to construction in order to obtain authorization as it relates to temporary and permanent impacts to wetlands. As described in Sections 8.2.2 and 9.0, the Project is committed to provide mitigation as necessary to account for impacts to bat habitat and prime agricultural soil impacts based on the outcome of consultation with USFWS and VTFWD and with VTAAFM, respectively.

### **11.0 REFERENCES**

- Federal Emergency Management Agency (FEMA). 2018. Flood Insurance Rate Maps. Available online at: https://msc.fema.gov/portal. Accessed January 2018.
- Federal Geographic Data Committee. 2013. Classification of wetlands and deepwater habitats of the United States. FGDC-STD-004-2013. Second Edition. Wetlands Subcommittee, Federal Geographic Data Committee and U.S. Fish and Wildlife Service, Washington, DC
- Natural Resource Conservation Service (NRCS). 2018. NRCS Web Soil Survey. Available online at: https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm. Accessed January 2018.
- Rosgen, D. 1996. Applied Fluvial Morphology. Wildland Hydrology Books, Pagosa Springs, Co.
- South Mountain Research and Consulting, Bristol, VT. 2011. Little Otter Creek Watershed: Phase 2, Stream Geomorphic Assessment, Addison County, VT. Prepared under contract to Lewis Creek Association, Charlotte VT, July 2011.
- Thompson, E.S., E. Sorenson. 2005, *Wetland, Woodland, Wildland: A Guide to the Natural Communities of Vermont.* Published by The Nature Conservancy and Vermont Department of Fish and Wildlife, distributed by University Press of New England.
- U.S. Army Corps of Engineers (USACE). 1987. U.S. Army Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1. U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, MS.
- USACE. 1993. The Highway Methodology Workbook. US Army Corps of Engineers New England Division. 28 pp. NEDEP-360-1-30.
- USACE. 2005. "Regulatory Guidance Letter. Subject: Ordinary High Water Mark Identification." No. 05-05. Available online at: https://www.nap.usace.army.mil/Portals/39/docs/regulatory/rgls/rgl05-05.pdf. Accessed January 2019.
- USACE. 2012. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeastern Region (Version 2.0), ed. J.S. Wakely, R.W. Lichvar, C.V. Noble. ERDC/EL TR-12-1. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
- USACE. 2013. Vernal Pool Assessment Guidance, Draft. US Army Corps of Engineers New England Division. Available online at: http://www.nae.usace.army.mil/Missions/Regulatory/Vernal-Pools/. Accessed January 2018.
- U.S. Fish and Wildlife Service (USFWS). 2016. Endangered and Threatened Wildlife and Plants; 4(d) Rule for the Northern Long-Eared Bat (81 FR 1900-1922). Federal Register, Vol. 81, No. 9. January 14, 2016.

November 14, 2019

- USFWS. 2019. IPaC Database: Information for Planning and Conservation. Available online at: https://ecos.fws.gov/ipac/\_ Accessed October 2019.
- Vermont Electric Power Company (VELCO). 2012. VELCO Environmental Guidance Manual. Rutland, VT.
- Vermont Agency of Natural Resources (VTANR). 2004. *Guidelines for the Conservation and Protection of State-Significant Natural Communities.* Available online at http://anr.vermont.gov/planning/act250-section248-info/guidance-docs. Accessed January 2018.
- VTANR. 2005. Riparian Buffer Guidance: December 9, 2005. Available online at: http://anr.vermont.gov/planning/act250-section248-info/guidance-docs. Accessed January 2018.
- VTANR. 2016a. *Guidance for Conducting Rare, Threatened, and Endangered Plant Inventories*. Available online at http://anr.vermont.gov/planning/act250-section248-info/guidance-docs. Accessed January 2018.
- VTANR. 2016b. Vermont Water Quality Standards. Effective January 15, 2017. Available online at: http://dec.vermont.gov/watershed/laws. Accessed January 2018.
- VTANR. 2018. Vermont Wetland Rules. Effective August 15, 2018. Available online at: https://dec.vermont.gov/sites/dec/files/documents/wsmd\_VermontWetlandRules\_2018.pdf. Accessed October 2019.
- VTANR. 2019a. Vermont Agency of Natural Resources Atlas. Available online at: http://anr.vermont.gov/maps/nr-atlas\_ Accessed September 2017-October 2019.
- VTANR. 2019b. The Vermont Standards and Specifications for Erosion Prevention & Sediment Control. Vermont Department of Environmental Conservation.
- Vermont Center for Geographic Information Services (VCGI). 2018. Vermont Geodata Portal. Available online at: http://geodata.vermont.gov/\_ Accessed January 2018.
- Vermont Fish and Wildlife Department (VTFWD). 2017. *Regulatory Review Guidance for Protecting Northern Long-eared Bats and Their Habitats.* Vermont Fish and Wildlife Department. February 2017.

## TABLES

#### NATURAL RESOURCES REPORT - NEW HAVEN OPERATIONS FACILITY Tables November 14, 2019

#### Table 1. Summary of Delineated Streams, Proposed New Haven Operations Facility, New Haven, Vermont.

| Natural<br>Resource<br>Map<br>Number | Stream ID | Town      | Stream<br>Name | Mapping Type<br>(Center Line,<br>TOB) | Flow Regime <sup>1</sup> | Average Ordinary<br>High Water<br>(OHW) <sup>2</sup> Width (ft) | Rosgen<br>Classification <sup>3</sup> | VWQS<br>Classification <sup>4</sup> | 2016<br>Impaired<br>Water List<br>(Y/N) <sup>5</sup> |                           |
|--------------------------------------|-----------|-----------|----------------|---------------------------------------|--------------------------|-----------------------------------------------------------------|---------------------------------------|-------------------------------------|------------------------------------------------------|---------------------------|
| 1                                    | NH-204    | New Haven | NA             | Center Line                           | Ephemeral                | 5                                                               | G6                                    | В                                   | N                                                    | Short ephemeral stream be |

<sup>1</sup> Flow regimes were preliminarily classified as perennial, intermittent, or ephemeral based on qualitative observations of instream hydrology indicators at the time of observation and geomorphic traits.

<sup>2</sup> USACE 2005. U.S. Army Corps of Engineers. 2005. "Regulatory Guidance Letter. Subject: Ordinary High Water Mark Identification." No. 05 05.

<sup>3</sup> Rosgen D. 1996. Applied Fluvial Morphology. Wildland Hydrology Books, Pagosa Springs, Co.

<sup>4</sup> Vermont Agency of Natural Resources (ANR) 2017. Vermont Water Quality Standards. Effective January 15, 2017.

<sup>5</sup> State of Vermont 2016 303(d) List of Impaired Waters.

#### Comment

#### between segments of wetland NH-203

### Table 2. Summary of Delineated Wetlands, Proposed VELCO New Haven Operations Facility, New Haven, Vermont.

| Natural<br>Resource<br>Map<br>Number | Wetland<br>ID | Town      | Cowardin<br>Classification <sup>1</sup> | VWR Section 5<br>Functional<br>Criteria<br>(Functions and<br>Values) <sup>2</sup> | VWR Section<br>4.6 | Contiguous /<br>Overlaps<br>VSWI (Y/N) | Associated<br>Streams | Associated<br>PVPs | Mapped Area<br>(Sq Ft) | Functionally<br>Significant<br>(Y/N) | VWR<br>Classification <sup>4</sup> | Comments                                                       |
|--------------------------------------|---------------|-----------|-----------------------------------------|-----------------------------------------------------------------------------------|--------------------|----------------------------------------|-----------------------|--------------------|------------------------|--------------------------------------|------------------------------------|----------------------------------------------------------------|
| 1                                    | NH-201        | New Haven | PEM                                     | 1 L, 2 L                                                                          | NA                 | Ν                                      |                       | NA                 | 11,098*                | Ν                                    | III                                | Depressional wetland in mowed field                            |
| 1                                    | NH-202        | New Haven | PEM                                     | 1 P, 2 H                                                                          | a, h               | Y                                      |                       | NA                 | 37,530                 | Y                                    | II                                 | VSWI mapped wetland, large PEM wetland                         |
| 1                                    | NH-203        | New Haven | PEM                                     | 1 P, 2 L                                                                          | а                  | Ν                                      | NH-204                | NA                 | 23,720*                | Ν                                    | III                                | Small swale wetland, feeds emphemeral stream                   |
| 1                                    | NH-008        | New Haven | PEM                                     | 1 L, 2 L                                                                          | NA                 | Ν                                      |                       | NA                 | 18,205*                | Ν                                    | III                                | Wetland adjacent to access roads and Vermont Route 17          |
| 1                                    | NH-009        | New Haven | PSS                                     | 1 L, 2 L                                                                          | а                  | Ν                                      |                       | NA                 | 28,806*                | Ν                                    |                                    | Wetland system adjacent ot laydown area and stormwater systems |
| 1                                    | NH-010        | New Haven | PEM                                     | 2 P                                                                               | NA                 | Ν                                      |                       | NA                 | 796*                   | Ν                                    |                                    | Small isolated wetland swale                                   |
| 1                                    | BUCC-01       | New Haven | PEM                                     | 1 P, 2 L, 10 L                                                                    | а                  | Ν                                      |                       | NA                 | 47,426*                | Ν                                    |                                    | Large PEM swale wetland, two components connected by a culvert |

\* Wetland is delineated completely within the Study Area.

<sup>1</sup> Federal Geographic Data Committee. 2013. Classification of wetlands and deepwater habitats of the United States.

<sup>2</sup> Functions and values were qualitatively evaluated based on the Function Criteria for Evaluating a Wetland's Significance in accordance with the VWR Section 5.

<sup>3</sup> Codes listed correspond with Section 4.6 Presumptions of the 2018 Vermont Wetland Rules.

<sup>4</sup> VWR classifications confirmed by VTANR staff during site visits on 10/11/18 and 10/8/19.

Table 3. RTE Desktop Assessment of Element Occurrences within 2 miles of the Study Area, Proposed VELCO New Haven Operations Facility, New Haven, Vermont.

|                                     |                         |        |               |           |                  |                                                                                                   |                        | 2018 Survey Recommendation               |                                                                                  |
|-------------------------------------|-------------------------|--------|---------------|-----------|------------------|---------------------------------------------------------------------------------------------------|------------------------|------------------------------------------|----------------------------------------------------------------------------------|
| Scientific Name                     | Common Name             | Туре   | VT State Rank | VT Status | EO last observed | Habitat Description <sup>1</sup>                                                                  | Phenology <sup>2</sup> | Potential for Habitat within Study Area? | Comments                                                                         |
| Pycnanthemum muticum                | Blunt Mountain-mint     | Plant  | S1            | -         | 2013             | Woodlands, forest openings,<br>fields, open rights-of-way, ridges,<br>balds.                      | Summer - Late Summer   | Yes                                      | Not a listed species                                                             |
| Juncus greenei                      | Greene's Rush           | Plant  | S2            | E         | 2015             | Sandplains, dry fields, sandy road shoulders, rock outcrops.                                      | Summer - Late Summer   | Yes                                      | Possible habitat<br>along road<br>shoulders,<br>Endangered in<br>Vermont         |
| Sanicula canadensis var. canadensis | Short-styled Snakeroot  | Plant  | S2S3          | Т         | 2016             | Rich, mesic forests, dry-mesic forests on sandy soils.                                            | Summer                 | Yes                                      | Possible habitat<br>along mesic-forest<br>edge at eastern<br>edge of Study Area. |
| Woodsia obtusa ssp. Obtusa          | Blunt-leaved Woodsia    | Plant  | S3            | -         | 2002             | Cliffs and rocky slopes,<br>predominantly on high-pH<br>substrate.                                | Summer - Late Summer   | No                                       | Not a listed species                                                             |
| Carex trichocarpa                   | Hairy Sedge             | Plant  | S3            | -         | 2016             | Wet meadows, ditches, lake<br>shores, riverside marshes and<br>fields, usually in high-pH bedrock |                        | Yes                                      | Not a listed species                                                             |
| Ranunculus pensylvanicus            | Bristly crowfoot        | Plant  | S3            | -         | 2016             | Shorelines, river banks, swamps, ditches, marshes.                                                | Summer                 | Yes                                      | Not a listed species                                                             |
| Ambystoma laterale                  | Blue-spotted Salamander | Animal | S3            | -         | 2015             | Most commonly in moist<br>hardwood forests but also in<br>wooded swamps, marshes, and<br>bogs.    | Spring Breeder         | No                                       | Not a listed species                                                             |

<sup>1</sup> Potential sources for habitat descriptions include:

USDA, NRCS. 2018. The PLANTS Database (http://plants.usda.gov, 15 May 2018). National Plant Data Team, Greensboro, NC 27401-4901

Gleason, Henry A., and Arthur Cronquist. 1991. Manual of Vascular Plants of Northeaster United States and Adjacent Canada. The New York Botanical Garden.

Haines, Arthur. 2011. Flora Novae Angliae . New England Wildflower Society/Yale University Press, New Haven, CT . 973 Pp.

Newcomb, Lawrence. 1977. Newcomb's Wildflower Guide . Little, Brown, and Company, Boston

Seymour, Frank Conkling. 1982. The Flora of New England . 2d ed. Phytologia Memoirs 5. Plainfield, NJ: Harold N. Moldenke and Alma L. Moldenke. 611 p. [7604]

Andrews, James S. 2018. The Vermont Reptile & Amphibian Atlas. The Vermont Reptile and Amphibian Atlas Project (vtherpatlas.org, 15 May 2018). Salisbury, VT 05769

Thompson, Elizabeth H., and Eric R. Sorenson. 2005. Wetland, Woodland, Wildland: A Guide to the Natural Communities of Vermont . Vermont Department of Fish and Wildlife and The Nature Conservancy. Vermont Natural Resources Atlas, Accessed May 2018. Element Occurrence Reports

<sup>2</sup> Flowering Time: Spring (April-May), Summer (June-July), Late Summer (August-September), Fall (October-November)

### Table 4. Partial Botanical Inventory Results, 9 August 2018, Proposed VELCO New Haven Operations Facility, New Haven, Vermont.

| Scientific Name <sup>1</sup>                 | Common Name                          | Family                   | Forest<br>and/or<br>Hedge | Mowed<br>Field | Emergent<br>Wetland | VT Rarity<br>Rank <sup>2</sup> | Non-<br>Native<br>Invasive<br>Species <sup>3</sup> |
|----------------------------------------------|--------------------------------------|--------------------------|---------------------------|----------------|---------------------|--------------------------------|----------------------------------------------------|
| Acer negundo                                 | Ash-leaf maple                       | Sapindaceae              | Х                         |                |                     |                                |                                                    |
| Acer rubrum                                  | Red maple                            | Sapindaceae              | Х                         |                |                     |                                |                                                    |
| Acer saccharum                               | Sugar maple                          | Sapindaceae              | Х                         |                |                     |                                |                                                    |
| Actaea rubra                                 | Red baneberry                        | Ranunculaceae            | Х                         |                |                     |                                |                                                    |
| Agrostis gigantea                            | Redtop bentgrass                     | Poaceae                  |                           | Х              | Х                   |                                |                                                    |
| Ambrosia artemisiifolia                      | Common ragweed                       | Asteraceae               | Х                         | Х              |                     |                                |                                                    |
| Amelanchier laevis                           | Smooth shadbush                      | Rosaceae                 | X                         |                |                     |                                |                                                    |
| Anemone canadensis                           | Canada windflower                    | Ranunculaceae            | X                         |                |                     |                                |                                                    |
| Arctium minus                                | Common burdock                       | Asteraceae               | Х                         | X              |                     |                                |                                                    |
| Artemisia vulgaris*                          | Common wormwood*                     | Asteraceae               |                           | X              | _                   |                                |                                                    |
| Asclepias syriaca                            | Common milkweed                      | Apocynaceae              | X                         | Х              |                     |                                |                                                    |
| Athyrium angustum                            | Northern lady fern                   | Woosiaceae               | X                         |                |                     |                                |                                                    |
| Betula alleghaniensis                        | Yellow birch                         | Betulaceae<br>Betulaceae | X<br>X                    |                |                     |                                |                                                    |
| Betula populifolia<br>Bidens frondosa        | Gray birch                           | Asteraceae               | ~                         |                | Х                   |                                |                                                    |
| Bromus inermis                               | Devil's beggar-ticks<br>Smooth brome | Poaceae                  |                           | X              | ^                   |                                |                                                    |
|                                              |                                      | Poaceae                  | -                         |                | Х                   |                                |                                                    |
| Calamagrostis canadensis<br>Caltha palustris | Bluejoint<br>Marsh marigold          | Ranunculaceae            | +                         |                | X                   |                                |                                                    |
| Calystegia sepium                            | Hedge false bindweed                 | Convolvulaceae           | X                         | Х              | ^                   |                                |                                                    |
| Carystegia sepium<br>Campanula rapunculoides | Creeping bellflower                  | Campanulaceae            | ^                         | X              |                     |                                | <del> </del>                                       |
| Carex annectens                              | Yellow-fruited sedge                 | Cyperaceae               |                           | X              |                     |                                |                                                    |
| Carex brunnescens                            | Brownish sedge                       | Cyperaceae               | Х                         | ^              |                     |                                |                                                    |
| Carex crawfordii                             | Crawford's sedge                     | Cyperaceae               | ~                         | Х              |                     |                                |                                                    |
| Carex intumescens                            | Greater bladder sedge                | Cyperaceae               | Х                         | ^              |                     |                                |                                                    |
| Carex pallescens                             | Pale sedge                           | Cyperaceae               | ~                         | Х              |                     |                                |                                                    |
| Carex projecta                               | Necklace sedge                       | Cyperaceae               |                           | X              |                     |                                |                                                    |
| Carex scoparia                               | Pointed broom sedge                  | Cyperaceae               |                           | X              |                     |                                |                                                    |
| Carex vesicaria                              | Lesser bladder sedge                 | Cyperaceae               |                           | X              | Х                   |                                | -                                                  |
| Centaurium pulchellum                        | Branched centaury                    | Gentianaceae             |                           | Х              |                     |                                |                                                    |
| Chenopodium album                            | Lambsquarters                        | Amaranthaceae            |                           | X              |                     |                                |                                                    |
| Cichorium intybus                            | Chicory                              | Asteraceae               |                           | X              |                     |                                |                                                    |
| Cinna latifolia                              | Slender wood reed                    | Poaceae                  | Х                         | Λ              |                     |                                |                                                    |
| Circaea canadensis                           | Broad-leaved enchanter's-nightshade  | Onagraceae               | X                         |                |                     |                                |                                                    |
| Cirsium arvense                              | Creeping thistle                     | Asteraceae               |                           | Х              |                     |                                |                                                    |
| Cirsium vulgare                              | Common thistle                       | Asteraceae               |                           | X              |                     |                                |                                                    |
| Convallaria majalis                          | Lily-of-the-valley                   | Ruscaceae                | Х                         | ~~~~~          |                     |                                |                                                    |
| Conyza canadensis                            | Canada fleabane                      | Asteraceae               |                           | Х              |                     |                                |                                                    |
| Cornus racemosa*                             | Gray dogwood*                        | Cornaceae                | Х                         |                |                     |                                |                                                    |
| Cornus sericea                               | Red Osier dogwood                    | Cornaceae                | Х                         |                |                     |                                |                                                    |
| Cyperus strigosus                            | Straw-colored flatsedge              | Cyperaceae               |                           | Х              |                     |                                |                                                    |
| Dactylis glomerata*                          | Orchard grass*                       | Poaceae                  |                           | Х              |                     |                                | -                                                  |
| Daucus carota                                | Queen Anne's lace                    | Apiaceae                 |                           | Х              |                     |                                |                                                    |
| Dicanthelium lanuginosum                     | Hairy rosette-panicgrass             | Poaceae                  |                           | Х              |                     |                                |                                                    |
| Dryopteris carthusiana                       | Spinulose wood fern                  | Dryopteridaceae          | Х                         |                |                     |                                | -                                                  |
| Dryopteris cristata                          | Crested wood fern                    | Dryopteridaceae          |                           |                | Х                   |                                |                                                    |
| Dryopteris intermedia                        | Evergreen wood fern                  | Dryopteridaceae          | Х                         |                |                     |                                |                                                    |
| Echinochloa crus-galli                       | Common barnyard grass                | Poaceae                  |                           | Х              |                     |                                |                                                    |
| Echinochloa muricata                         | American barnyard grass              | Poaceae                  |                           | Х              |                     |                                |                                                    |
| Echinocystis lobata                          | Wild cucumber                        | Cucurbitaceae            | Х                         |                |                     |                                |                                                    |
| Elaeagnus umbellata                          | Autumn-olive                         | Elaeagnaceae             | Х                         |                |                     |                                | WL                                                 |
| Eleocharis tenuis                            | Slender spikesedge                   | Cyperaceae               |                           | Х              |                     |                                |                                                    |
| Elymus repens                                | Creeping wild-rye                    | Poaceae                  |                           | Х              |                     |                                |                                                    |
| Epilobium ciliatum                           | Fringed willow-herb                  | Onagraceae               |                           |                | Х                   |                                |                                                    |
| Equisetum arvense                            | Field horsetail                      | Equisetaceae             |                           | Х              | Х                   |                                |                                                    |
| Erechtites hieraciifolius                    | American burnweed                    | Asteraceae               |                           | Х              |                     |                                |                                                    |
| Erigeron annuus                              | Annual fleabane                      | Asteraceae               |                           | Х              |                     |                                |                                                    |
| Erigeron philadelphicus                      | Philadelphia fleabane                | Asteraceae               |                           | Х              |                     |                                |                                                    |
| Erigeron strigosus                           | Rough fleabane                       | Asteraceae               |                           | Х              |                     |                                |                                                    |
| Eupatorium perfoliatum                       | Boneset thoroughwort                 | Asteraceae               |                           |                | Х                   |                                |                                                    |
| Euphorbia cyparissias                        | Cypress spurge                       | Euphorbiaceae            |                           | Х              |                     |                                | WL                                                 |
| Euthamia graminifolia                        | Common grass-leaved goldenrod        | Asteraceae               | Х                         | Х              |                     |                                |                                                    |
| Eutrochium maculatum                         | Spotted Joe-Pye weed                 | Asteraceae               |                           |                | Х                   |                                |                                                    |
| Festuca rubra                                | Red fescue                           | Poaceae                  |                           | Х              |                     |                                |                                                    |
| Fraxinus americana                           | White ash                            | Oleaceae                 | Х                         |                |                     |                                |                                                    |
| Fraxinus pennsylvanica                       | Green ash                            | Oleaceae                 | Х                         |                |                     |                                |                                                    |

#### NATURAL RESOURCES REPORT – NEW HAVEN OPERATIONS FACILITY Tables November 14, 2019

Non-Forest VT Rarity Emergent Native Mowed **Common Name** Family and/or Scientific Name<sup>1</sup> Invasive Field Wetland Rank<sup>2</sup> Hedge Species<sup>3</sup> Galeopsis tetrahit Lamiaceae Brittle-stemmed hemp-nettle Х Galium asprellum Rough bedstraw Rubiaceae Х Galium mollugo Whorled bedstraw Rubiaceae Х Galium triflorum Fragrant bedstraw Rubiaceae Х Geum aleppicum Yellow avens Rosaceae Х Geum canadense Rosaceae White avens Х Water avens Geum rivale Rosaceae Х Hackelia virginiana Virginia stickseed Х Boraginacaea Hieracium caespitosum Yellow hawkweed Asteraceae Х Hylotelephium telephium Purple orpine Crassulaceae Х Common St. John's-wort Hypericum perforatum Hypericaceae Х Impatiens capensis Х Jewelweed Balsaminaceae Inula helenium Х Horse yellowhead Asteraceae Dudley's rush Juncus dudleyi Х Juncaceae Juncus effusus Х Common soft rush Juncaceae Juniperus communis Common juniper Cupressaceae Х Juniperus virginiana Х Eastern red cedar Cupressaceae Leersia oryzoides Rice cut grass Poaceae Х Lobelia inflata Indian-tobacco Campanulaceae Х Lolium perenne Perennial rye grass Poaceae Х Caprifoliaceae В Lonicera morrowii\* Morrow's honeysuckle<sup>\*</sup> Х Х Lotus corniculatus' Garden bird's-foot-trefoil\* Fabaceae \_ycopus americanus American water-horehound Lamiaceae Х Lythrum salicaria Purple loosestrife Х В Lythraceae Medicago sativa Alfalfa Fabaceae Х Melilotus albus Х White sweet-clover Fabaceae Oenothera biennis Common evening-primrose Onagraceae Х Onoclea sensibilis Х Sensitive fern Onocleaceae Osmunda claytoniana Osmundaceae Interrupted fern Х Oxalis corniculata Creeping yellow wood sorrel Oxalidaceae Х Common yellow wood sorrel Oxalidaceae Х Oxalis stricta Panicum virgatum Switch panicgrass Poaceae Х Parthenocissus quinquefolia Vitaceae Х Virginia creeper Х Pastinaca sativa Wild parsnip Apiaceae Х WL Х Pennsylvania smartweed Persicaria pensylvanica Polygonaceae Persicaria sagittata Arrow-leaved tearthumb Polygonaceae Х Х Х WL Phalaris arundinacea\* Reed canary grass\* Poaceae Phleum pratense Timothy' Poaceae Х Pinus strobus' Eastern white pine' Х Pinaceae Х Plantago lanceolata English plantain Plantaginaceae Common plantain Plantago major Plantaginaceae Х Flat-stemmed blue grass Poa compressa Poaceae Х Poa pratensis Kentucky blue grass Poaceae Х Х Populus deltoides Х Eastern cottonwood Salicaceae Populus grandidentata Salicaceae Х **Bigtooth** aspen Populus tremuloides Х Quaking aspen Salicaceae Prunus serotina Black cherry Rosaceae Х Х Quercus macrocarpa Burr oak Fagaceae Х Quercus velutina Black oak Fagaceae Tall buttercup Ranunculus acris Ranunculaceae Х European buckthorn\* Rhamnus cathartica Rhamnaceae Х В Rhus typhina Staghorn sumac Anacardiaceae Х Х Ribes americanum Eastern black currant Grossulariaceae Rorippa palustris Common vellow-cress Brassicaceae Х WL Rosa multiflora Multiflora rose Rosaceae Х Х Rubus allegheniensis Common blackberry Х Rosaceae Х Х Rubus idaeus Red raspberry Rosaceae Black-eved susan Rudbeckia hirta Asteraceae Х Rumex crispus Curly dock Polygonaceae Х Long-beaked willow Salix bebbiana Salicaceae Х Salix discolor Pussy willow Salicaceae Х Х Salix nigra Black willow Salicaceae Black elderberry Sambucus nigra Adoxaceae Х Saponaria officinalis Common soapwort Caryophyllaceae Х Setaria pumila Yellow foxtail Poaceae Х Scirpus atrovirens Dark-green bulrush Cyperaceae Х Common woolsedge Scirpus cyperinus Х Cyperaceae Scirpus pedicellatus Stalked woolsedge Cyperaceae Х

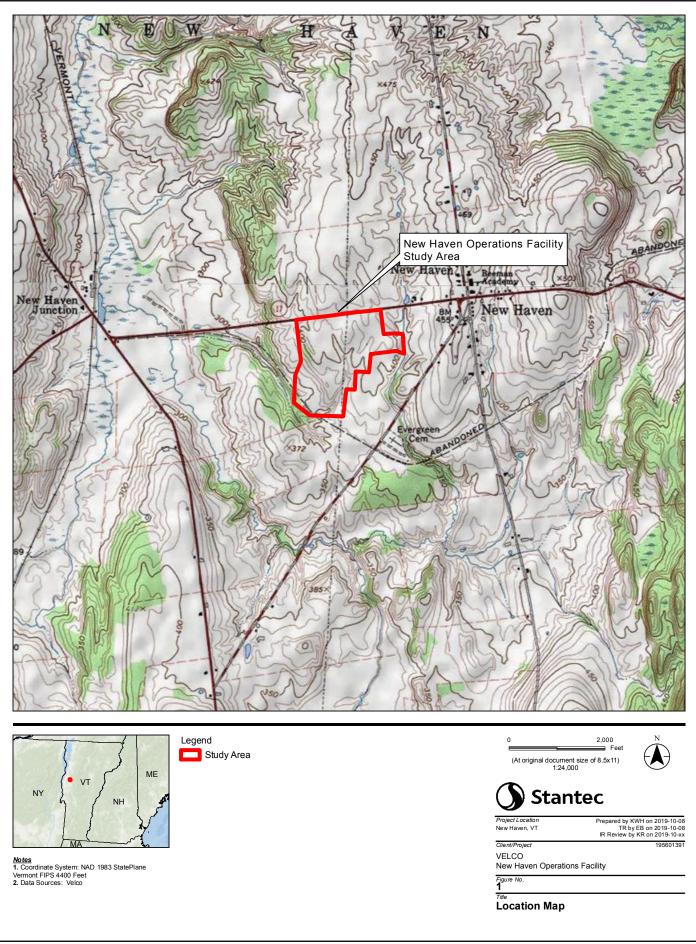
#### NATURAL RESOURCES REPORT – NEW HAVEN OPERATIONS FACILITY Tables November 14, 2019

| Scientific Name <sup>1</sup> | Common Name                     | Family           | Forest<br>and/or<br>Hedge | Mowed<br>Field | Emergent<br>Wetland | VT Rarity<br>Rank <sup>2</sup> | Non-<br>Native<br>Invasive<br>Species <sup>3</sup> |
|------------------------------|---------------------------------|------------------|---------------------------|----------------|---------------------|--------------------------------|----------------------------------------------------|
| Setaria viridis              | Green foxtail                   | Poaceae          |                           | Х              |                     |                                |                                                    |
| Solanum dulcamara            | Climbing nightshade             | Solanaceae       |                           | Х              |                     |                                |                                                    |
| Solidago canadensis          | Canada goldenrod                | Asteraceae       |                           | Х              |                     |                                |                                                    |
| Solidago gigantea            | Smooth goldenrod                | Asteraceae       |                           |                | Х                   |                                |                                                    |
| Solidago rugosa              | Common wrinkle-leaved goldenrod | Asteraceae       |                           | Х              |                     |                                |                                                    |
| Solidago uliginosa           | Bog goldenrod                   | Asteraceae       |                           |                | Х                   |                                |                                                    |
| Sonchus arvensis             | Field sow-thistle               | Asteraceae       |                           | Х              |                     |                                |                                                    |
| Sonchus asper                | Spiny-leaved sow-thistle        | Asteraceae       |                           | Х              |                     |                                |                                                    |
| Stellaria graminea           | Grass-leaved stitchwort         | Caryophyllaceae  |                           | Х              |                     |                                |                                                    |
| Symphyotrichum lanceolatum   | Lance-leaved American-aster     | Asteraceae       |                           |                | Х                   |                                |                                                    |
| Symphyotrichum lateriflorum  | Calico American-aster           | Asteraceae       | Х                         |                |                     |                                |                                                    |
| Symphyotrichum novi-belgii   | New York American-aster         | Asteraceae       |                           |                | Х                   |                                |                                                    |
| Symphyotrichum puniceum      | Purple-stemmed American-aster   | Asteraceae       |                           | Х              | Х                   |                                |                                                    |
| Taraxacum officinale*        | Common dandelion*               | Asteraceae       |                           | Х              |                     |                                |                                                    |
| Toxicodendron radicans       | Poison-ivy                      | Anacardiaceae    | Х                         |                |                     |                                |                                                    |
| Trifolium arvense            | Rabbit-foot clover              | Fabaceae         |                           | Х              |                     |                                |                                                    |
| Trifolium pratense           | Red clover                      | Fabaceae         |                           | Х              |                     |                                |                                                    |
| Trifolium repens             | White clover                    | Fabaceae         |                           | Х              |                     |                                |                                                    |
| Tussilago farfara            | Coltsfoot                       | Asteraceae       |                           | Х              |                     |                                |                                                    |
| Typha angustifolia           | Narrow-leaved cat-tail          | Typhaceae        |                           |                | Х                   |                                |                                                    |
| Typha latifolia              | Broad-leaved cat-tail           | Typhaceae        |                           |                | Х                   |                                |                                                    |
| Ulmus americana              | American elm                    | Ulmaceae         | Х                         |                |                     |                                |                                                    |
| Verbascum thapsus            | Common mullein                  | Scrophulariaceae |                           | Х              |                     |                                |                                                    |
| Verbena hastata              | Blue vervain                    | Verbenaceae      |                           |                | Х                   |                                |                                                    |
| Veronica serpyllifolia       | Thyme-leaved speedwell          | Plantaginaceae   |                           | Х              |                     |                                |                                                    |
| Viburnum dentatum            | Smooth arrowwood                | Adoxaceae        | Х                         |                |                     |                                |                                                    |
| Viburnum lentago             | Nannyberry                      | Adoxaceae        | Х                         |                |                     |                                |                                                    |
| Vicia cracca                 | Cow vetch                       | Fabaceae         |                           | Х              |                     |                                |                                                    |
| Vicia sativa                 | Common vetch                    | Fabaceae         |                           | Х              |                     |                                |                                                    |
| Viola sororia                | Wooly blue violet               | Violaceae        |                           |                | Х                   |                                |                                                    |
| Vitis aestivalis             | Summer grape                    | Vitaceae         | Х                         |                |                     |                                |                                                    |
| Vitis riparia                | River grape                     | Vitaceae         | Х                         |                |                     |                                |                                                    |

\* Denotes a dominant species within the Study Area and/or habitat type.

<sup>1</sup> Nomenclature follows USDA-NRCS PLANTS database (2018) and/or Haines (2011).

<sup>2</sup> The Vermont State Rank from the "Rare and Uncommon Native Vascular Plants of Vermont - Vermont Natural Heritage Inventory - Vermont Fish & Wildlife Department", version dated March 24, 2017.


<sup>3</sup> Vermont Agency of Agriculture, Food & Markets (VTAAFM) Quarantine #3- Noxious Weeds (2012). A= Class A Noxious Weeds, B= Class B Noxious Weeds Vermont Agency of Natural Resources (ANR) Vermont Wildlife Action Plan- Appendix K Exotic Invasive and Pest Species (2017). WL= Watch List Species.

Tables November 14, 2019

## Table 5. Summary of NRCS prime farmland classifications within the Study Area,Proposed New Haven Operations Facility, New Haven, Vermont.

| NRCS Soil Name and<br>Symbol  | NRCS PAS<br>Designation | Non-<br>functioning<br>PAS Impact<br>Area (acres) | Permanent<br>PAS Impact<br>Area (acres) | Temporary<br>PAS Impact<br>Area (acres) | Total<br>(acres) |
|-------------------------------|-------------------------|---------------------------------------------------|-----------------------------------------|-----------------------------------------|------------------|
| Raynham silt loam (RaB)       | Prime                   | -                                                 | -                                       | 0.09                                    | 0.09             |
| Nellis Ioam (NeB)             | Prime                   | 0.15                                              | 0.40                                    | 0.92                                    | 1.46             |
| Melrose fine sandy loam (MrA) | Prime                   | -                                                 | 0.20                                    | 0.60                                    | 0.80             |
| Vergennes clay (VgB)          | Statewide               | 1.22                                              | 2.82                                    | 3.11                                    | 7.15             |
| Nellis loam (NsC)             | n/a                     | -                                                 | -                                       | 0.25                                    | 0.25             |
| Nellis loam (NeC)             | Statewide               | -                                                 | 0.05                                    | -                                       | 0.05             |
|                               | Total                   | 1.37                                              | 3.47                                    | 4.96                                    | 9.80             |
|                               | SOAG Total              | 1.37                                              | 3.47                                    | 4.71                                    | 9.55             |

## **FIGURES**



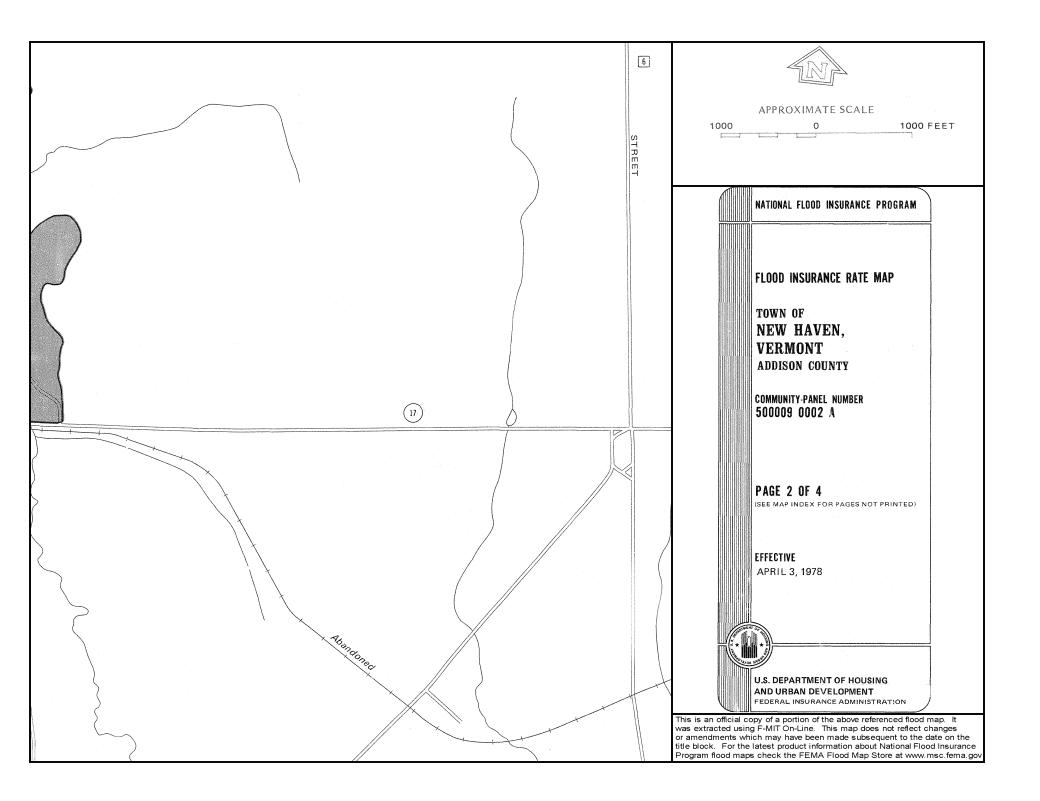
Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.

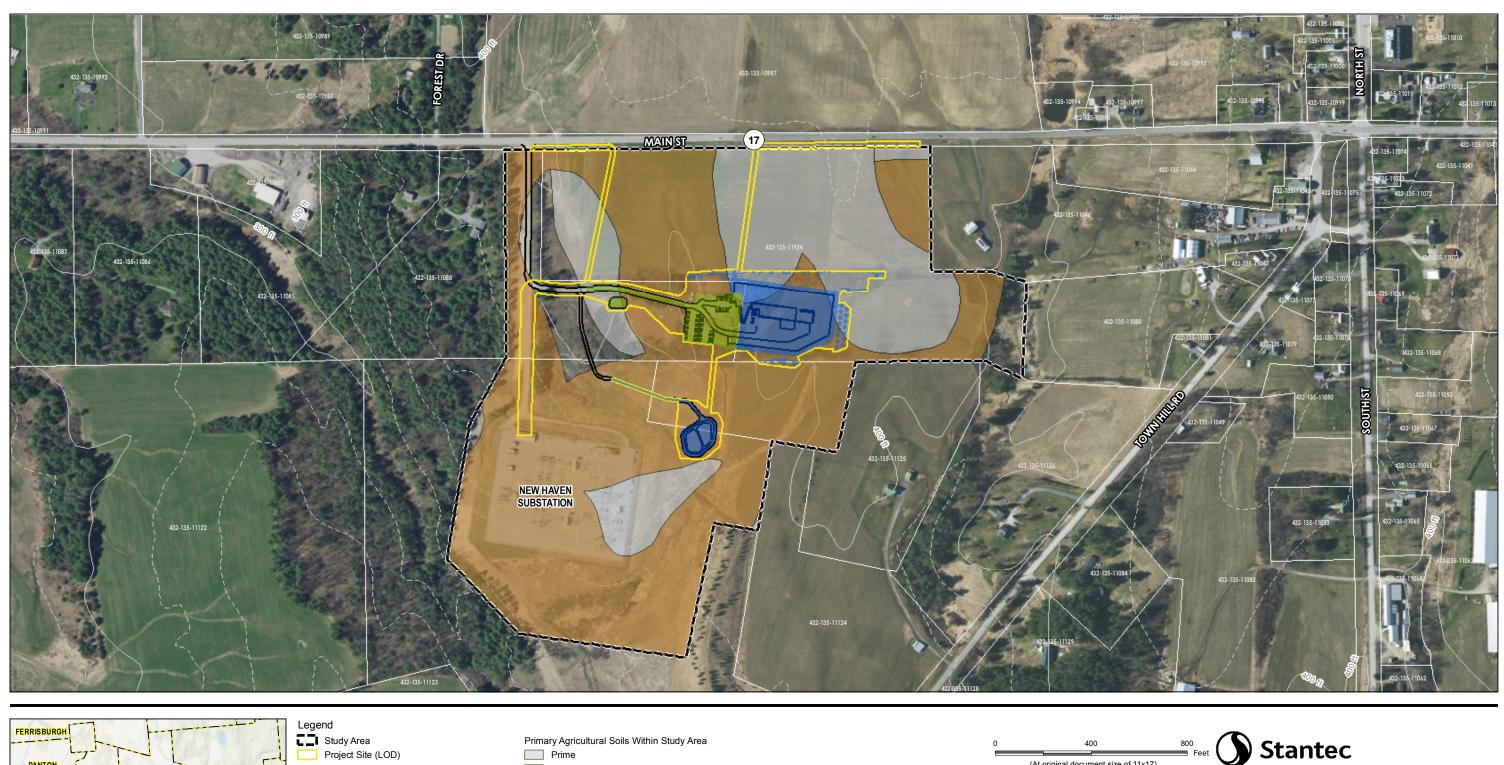


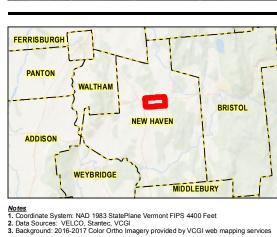
Notes
1. Coordinate System: NAD 1983 StatePlane Vermont FIPS 4400 Feet
2. Data Sources: VELCO, Stantec, VCGI
3. Background: 2016-2017 Color Ortho Imagery provided by VCGI web mapping services

MIDDLEBURY

WEYBRIDGE


Methodology for Identifying Wetlands, as amended 2017.
 Wetland boundaries were located utilizing a Trimble Geo-XH GeoExplorer 6000 Series Receiver. Expected accuracy of GPS data is within 1 meter of actual position.


Manual (1987), the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region Routine Determination


Method (USACE 2012) and in accordance with the Vermont Wetland Rules, Section

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and/or completeness of the data.

| Title Natural Resources Map            |                                                                                          |
|----------------------------------------|------------------------------------------------------------------------------------------|
| Figure No. 2                           |                                                                                          |
| VELCO<br>New Haven Operations Facility |                                                                                          |
| Client/Project                         | 195601391                                                                                |
| Project Location<br>New Haven, VT      | Prepared by KWH on 2019-10-08<br>TR by EB on 2019-10-08<br>IR Review by KR on 2019-11-07 |







- ---- Proposed New Haven Operation Facility
- Transmission Line ROW
  - Tax Parcel and Span
  - 20' Contour Line 100' Contour Line

- Statewide
- Existing Permanent Impact to Primary Agricultural Soils
- Proposed Permanent Impact to Primary Agricultural Soils

(At original document size of 11x17) 1:4,800



Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and/or completeness of the data.

Project Location New Haven, VT

Prepared by KWH on 2019-10-08 TR by EB on 2019-10-08 IR Review by KR on 2019-11-07 195601391

Client/Project VELCO

New Haven Operations Facility

Figure No. 4

Title Primary Agricultural Soils

## **APPENDICES**

Appendix A Representative Site Photographs November 14, 2019

## Appendix A REPRESENTATIVE SITE PHOTOGRAPHS

Appendix A Representative Site Photographs November 14, 2019

### A.1 REPRESENTATIVE LAND USE PHOTOGRAPHS

Appendix A.1 Representative Land Use Photographs November 14, 2019



Photo 1. Representative mowed field, looking south from Vermont Rt. 17, VELCO New Haven Operation Facility, August 9, 2018, Stantec.



Photo 2. Typical tree hedge row looking east towards the Study Area edge, VELCO New Haven Operation Facility, August 9, 2018, Stantec.

Appendix A.1 Representative Land Use Photographs November 14, 2019



Photo 3. Access road to Study Area and adjacent substation from Rt. 17, VELCO New Haven Operation Facility, August 9, 2018, Stantec.



Photo 4. Scrub hedge separating existing laydown yard from mowed field, looking west, VELCO New Haven Operation Facility, August 9, 2018, Stantec.

Appendix A.1 Representative Land Use Photographs November 14, 2019



Photo 5. Mowed field looking northeast, photo taken adjacent to wet meadow NH-203, VELCO New Haven Operation Facility, August 9, 2018, Stantec.

Appendix A Representative Site Photographs November 14, 2019

### A.2 REPRESENTATIVE STREAM PHOTOGRAPHS

Appendix A.2 Representative Stream Photographs November 14, 2019



Photo 1. Ephemeral stream NH-204, VELCO New Haven Operation Facility, November 1, 2017, Stantec.

Appendix A Representative Site Photographs November 14, 2019

### A.3 REPRESENTATIVE WETLAND PHOTOGRAPHS

Appendix A.3 Representative Wetland Photographs November 14, 2019



Photo 1. Wetland NH-008, VELCO New Haven Operation Facility, October 11, 2017, Stantec.



Photo 2. Wetland NH-201, VELCO New Haven Operation Facility, November 1, 2017, Stantec.

Appendix A.3 Representative Wetland Photographs November 14, 2019



Photo 3. Wetland NH-203, VELCO New Haven Operation Facility, November 1, 2017, Stantec.



Photo 4. Wetland NH-009, VELCO New Haven Operation Facility, October 11, 2017, Stantec.

Appendix A.3 Representative Wetland Photographs November 14, 2019



Photo 5. Wetland NH-010, VELCO New Haven Operation Facility, October 11, 2017, Stantec.



Photo 6. Wetland NH-202, VELCO New Haven Operation Facility, November 1, 2017, Stantec.

Appendix A.3 Representative Wetland Photographs November 14, 2019



Photo 7. Wetland BUCC-01 VELCO New Haven Operation Facility, July 18, 2019, Stantec.

Appendix B NNIS Technical Memorandum November 14, 2019

## Appendix B NNIS TECHNICAL MEMORANDUM



| To:   | VELCO                               | From: | Eben Baker              |
|-------|-------------------------------------|-------|-------------------------|
|       | VELCO: Rutland, VT                  |       | Stantec: Topsham, Maine |
| File: | VELCO New Haven Operations Facility | Date: | November 14, 2019       |

# Reference: New Haven Operations Facility Non-Native Invasive Species (NNIS) Inventory Technical Memorandum

Per the request of Vermont Transco LLC / Vermont Electric Power Company (VT Transco/VELCO; herein referred to as VELCO), Stantec Consulting Services Inc. (Stantec) conducted a Non-Native Invasive Species (NNIS) survey for their proposed New Haven Operations Facility (Project) to be located adjacent to their existing substation off State Route 17 (Main Street) in New Haven, Vermont. The NNIS survey was conducted within an approximately 72-acre area that is herein referred to as the Study Area (Attachment 1: Figure 1 – Location Map).

### STUDY AREA DESCRIPTION AND SURVEY METHODOLOGIES

The Study Area is located in Addison County in central New Haven on the southern side of Vermont State Route 17 (Main Street), approximately 1,900 feet west of the intersection of Vermont Routes 17 and 6. The Study Area is approximately 72-acres in size, and is bordered by approximately 1,600 feet of road frontage along Vermont Route 17 to the north; access roads, the VELCO New Haven Substation to the west and south; and open meadows and agricultural land to the south and east. Land cover within the Study Area is predominantly comprised of open meadow with a few tree rows extending through the center and along the western, southern, and southeastern boundaries. Surrounding land use consists predominantly of agriculture (cropland and pastures), with narrow forested corridors along the Study Area borders, and extend through the general area. The Study Area is generally located within the Champlain Valley biophysical region and subwatershed (HU12) Headwaters Little Otter Creek 041504080401.

The NNIS survey was conducted concurrently with the 2017 wetland delineation effort on October 11 and November 1, 2017, and the RTE/Botanical survey effort on August 9, 2018; the findings of which were submitted to VELCO as the Natural Resource Report. Stantec recorded NNIS occurrences of Class A and B ranked noxious weeds listed on the Vermont Agency of Agriculture Noxious Weeds Rule (2012)<sup>1</sup>. For individual occurrences of NNIS and for small populations, a Global Positioning System (GPS) point was taken at an individual plant or near the center of the population, and the size of the affected area and abundance of plants were estimated. Each point was further post-processed to create polygon features of various yet standard sizes that reflect the field estimated population area. For larger populations of invasive species, a GPS polygon was used to locate and encompass the approximate occurrence area, and the abundance of plants were recorded.

### RESULTS

Stantec observed three species of NNIS within the Study Area: Morrow's honeysuckle (*Lonicera morrowii*), purple loosestrife (*Lythrum salicaria*), and common buckthorn (*Rhamnus cathartica*). Occurrences of these three NNIS were located at field edges, forested hedgerows between mowed fields, along substation access routes, and along the forested slope on the eastern edge of the Study Area (Attachment 1: Figure 2 – Invasive Species Map). A total of six occurrences, comprising three different species, were collected during the field effort and are summarized in Table 1. The percent cover of occurrences varied between evenly sparse (1-5%) for large area occurrences and dense (76–100%) for single plant occurrences. The summary table reflects the total approximate area of NNIS occurrences by species, regardless of

<sup>&</sup>lt;sup>1</sup> Vermont Agency of Agriculture. 2012. Noxious Weeds Rules, Updated March 2012. Available online at: http://agriculture.vermont.gov/plant\_pest/plant\_weed/invasive\_noxious\_weeds



November 14, 2019 VELCO Page 2 of 2

#### Reference: New Haven Operations Facility Non-Native Invasive Species (NNIS) Inventory Technical Memorandum

occurrence density. Representative photographs of each species are included (Attachment 2 – Representative Photographs).

| Table 1: Summary of Non-Native Invasive Species (NNIS) Occurrences, VELCO New Haven Operations Facility |  |
|---------------------------------------------------------------------------------------------------------|--|
| Study Area                                                                                              |  |

| Scientific Name       | Common Name             | Field ID    | Approximate<br>Occurrence Abundance | Approximate NNIS<br>Percent Cover | Approximate<br>Occurrence Area (sq ft) |
|-----------------------|-------------------------|-------------|-------------------------------------|-----------------------------------|----------------------------------------|
|                       |                         | Lon_mor_052 | 100–999                             | 6–25%                             | 29,132                                 |
|                       |                         | Lon_mor_059 | 10–100                              | 1–5%                              | 47,774                                 |
| Lonicera morrowii     | Morrow's<br>Honeysuckle | Lon_mor_064 | 10–100                              | 1–5%                              | 102,262                                |
|                       |                         | Lon_mor_155 | 100–999                             | 1–5%                              | 93,218                                 |
|                       |                         | Lon_mor_156 | <10                                 | 26–50%                            | 1,000                                  |
|                       |                         | Rha_cat_050 | 10–100                              | 1–5%                              | 18,664                                 |
| Rhamnus<br>cathartica | Common<br>Buckthorn     | Rha_cat_051 | Single plant                        | 76–100%                           | 25                                     |
|                       |                         | Rha_cat_053 | 100–999                             | 1–5%                              | 23,491                                 |
| Lythrum salicaria     | Purple Loosestrife      | Lyt_sal_075 | <10                                 | <1%                               | 100                                    |

NNIS occurrences were wide-spread and well-established within forested and non-maintained portions of the Study Area. Occurrence population cover was especially dense in the forested hedgerows separating mowed fields or along the substation access route. It is important to note that NNIS populations extended outside of the Study Area.

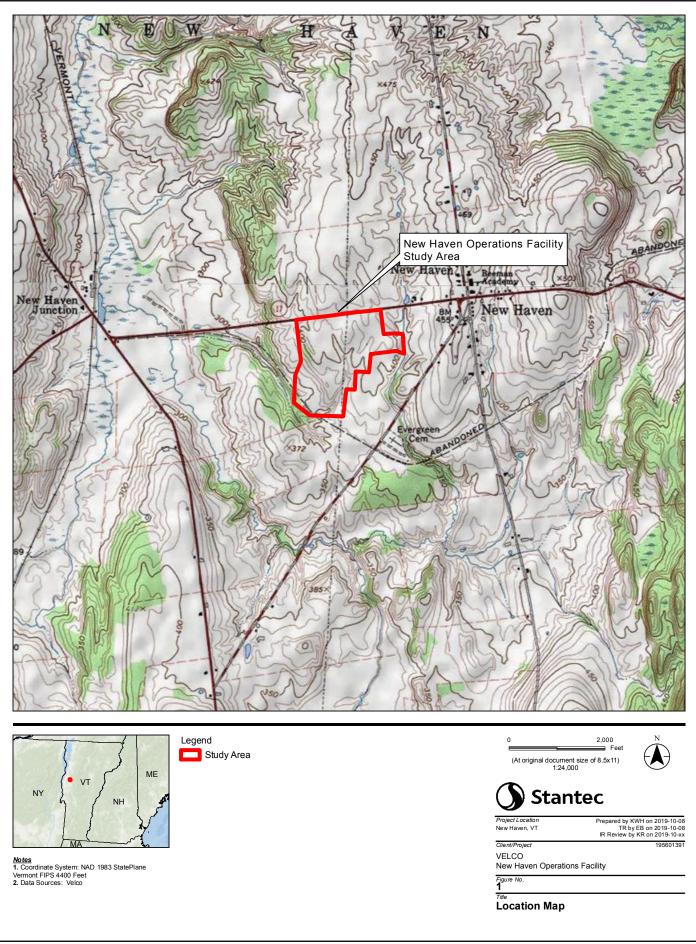
### CONCLUSION

Based on the proposed Project design, seven of the NNIS occurrences observed will be encountered during Project construction. To the extent practicable during construction, best management practices should be followed to minimize the possibility of spreading existing invasive plant populations. These measures include ensuring that equipment is clean prior to working on site and cleaned prior to leaving the site; in areas with existing invasive plant populations, the movement or storing of disturbed soil should be restricted to the immediate work area; and disturbed soils should be reseeded and stabilized with native seed mixtures to reduce the amount of time soil are exposed. The goal of these recommendations is to prevent further proliferation of NNIS populations within the Study Area as a result of Project construction.

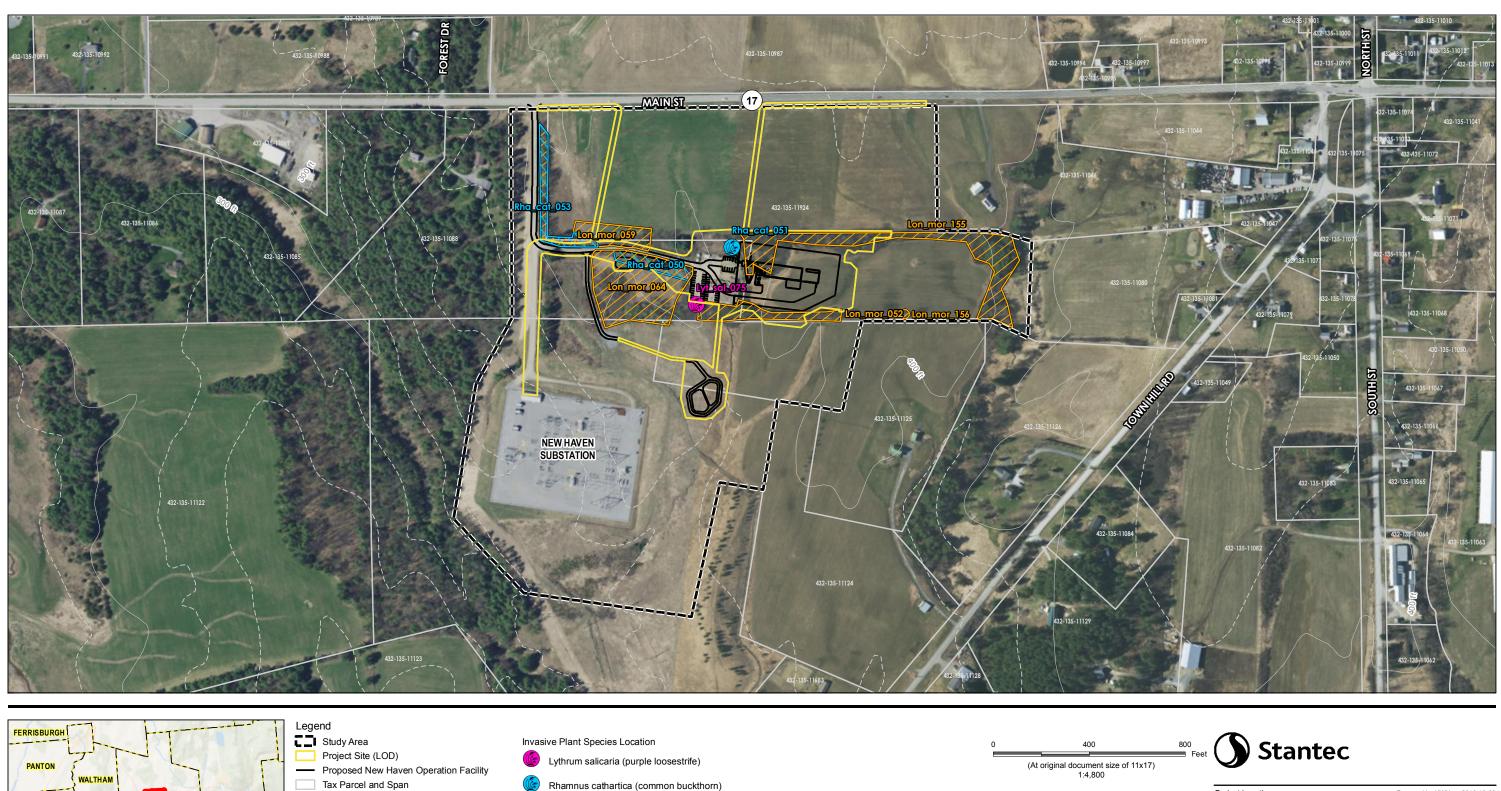
### **Stantec Consulting Services Inc.**

Babe

Eben Baker PWS, Associate Ecologist Project Scientist Phone: 207 406 5459 Fax: 207 729 2715 eben.baker@stantec.com


Attachment: 1: Figures 2: Representative Photographs




November 14, 2019 VELCO Figures

Reference: New Haven Operations Facility Non-Native Invasive Species (NNIS) Inventory Technical Memorandum

### **ATTACHMENT 1: FIGURES**



Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.



ADDISON

WEYBRIDGE

NEW HAVEN

BRISTOL

MIDDLEBURY

20' Contour Line

100' Contour Line

Notes
1. Coordinate System: NAD 1983 StatePlane Vermont FIPS 4400 Feet
2. Data Sources: VELCO, Stantec, VCGI
3. Background: 2016-2017 Color Ortho Imagery provided by VCGI web mapping services

Lonicera morrowii (Morrow honeysuckle)
Rhamnus cathartica (Common Buckthorn)

Invasive Note:

meters depending on site conditions.

1. Invasive species data located utilizing a GPS enabled iPad field tablet computer with a Garmin Glo Bluetooth GPS/GNSS receiver. Expected accuracy is within 3-5

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and/or completeness of the data.

Prepared by KWH on 2019-10-08 TR by EB on 2019-10-08 IR Review by KR on 2019-11-13 Project Location New Haven, VT Client/Project 195601391 VELCO New Haven Operations Facility Figure No. 2

Title Invasive Species Map



Reference: New Haven Operations Facility Non-Native Invasive Species (NNIS) Inventory Technical Memorandum

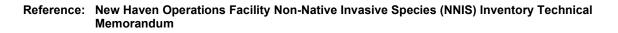
### **ATTACHMENT 2: REPRESENTATIVE PHOTOGRAPHS**



# Reference: New Haven Operations Facility Non-Native Invasive Species (NNIS) Inventory Technical Memorandum



**Photo 1:** Typical Morrow's honeysuckle occurrence, VELCO New Haven Operations Facility, November 1, 2017, Stantec.




Reference: New Haven Operations Facility Non-Native Invasive Species (NNIS) Inventory Technical Memorandum



**Photo 2:** Typical common buckthorn occurrence, VELCO New Haven Operations Facility, October 11, 2017, Stantec.







**Photo 3:** Typical purple loosestrife occurrence, VELCO New Haven Operations Facility, August 9, 2018, Stantec.

Appendix C Wetland Reporting November 14, 2019

## Appendix C WETLAND REPORTING

Appendix C Wetland Reporting November 14, 2019

### C.1 WETLAND CLASSIFICATION RECOMMENDATIONS AND DELINEATION SUMMARY

| From:        | Courage, Zapata                                                                                                             |
|--------------|-----------------------------------------------------------------------------------------------------------------------------|
| To:          | Harris, Polly; Jacob Reed                                                                                                   |
| Cc:          | <u>Reinhart, Krista</u>                                                                                                     |
| Subject:     | RE: VELCO New Haven Property Wetland Classification Site Visit                                                              |
| Date:        | Tuesday, January 15, 2019 4:35:02 PM                                                                                        |
| Attachments: | image001.jpg<br>image002.jpg<br>VELCO NewHavenBCC ReportMap 20190107.pdf<br>Table 2 New Haven BCC wetlands all 20190115.pdf |

Hello, I concur with the wetland delineation and classifications as depicted on the map and table:

- VELCO / New Haven Backup Control Center New Haven, VT, Natural Resources Map authored by Stantec, and dated 1/7/2019
- VELCO New Haven Back-up Control Center (BUCC) Table 2. Wetlands Delineated by Stantec\_preliminary authored by Stantec, and dated 1/15/2019

Wetland NH-202 is Class II: Class II significant wetlands and their 50 ft buffers are protected under the Vermont Wetland Rules (VWR). This report outlines the reasons for this decision, and serves as notice that any activity in the wetland or 50ft buffer zone may need a Vermont wetland permit before you start work. If you disagree with this decision you can petition for a formal wetland classification determination of Class III as outlined under the petition section of this report. The following table(s) document the reasons for this decision.

### Wetlands NH-201, NH-203, NH-008, NH-009, and NH-010 are Class III: Class III

wetlands are not protected under the Vermont Wetland Rules (VWR). No State Wetland permit is required for activities occurring in Class III wetlands. Although these wetlands may meet a presumption of size and type (Sect 4.6 [a]) under the VWR; an evaluation of Functions and Values confirmed no significance. Because wetland character, size, and function can change over time, the Wetlands Program recommends seeking a reevaluation of wetland status every 5 years, to avoid a potential violation of the VWR. If you disagree with this decision you can petition for a formal wetland classification determination of Class II as outlined under the petition section of this report.

Thank you! Zapata

### Hello Folks,

I concur with the wetland delineation for wetland BUCC-01 as shown on the map dated August 14, 2019, the wetland is topographically driven; Class II; drainage with stream at output end under road culvert. Jake it sounded like you may be able to make some adjustments to remain outside of the 50 ft. buffer. As I mentioned if you wish to plant native species such as white pine, juniper etc then you can do that in the buffer (no grading or berming). You have a lot of white pine on site that could be transplanted easily.

Shoot me over a final site design and I can sign off for you.

Zap

Polly, I hope all is as well as it can be for you and your mom. Hope to see you in the field soon-ish.

Appendix C Wetland Reporting November 14, 2019

## C.2 VERMONT WETLAND EVALUATION FORMS

| VERMONT WETLAND EVALUATION FORM                             |             |                                                                |        |  |  |
|-------------------------------------------------------------|-------------|----------------------------------------------------------------|--------|--|--|
| Project Name:                                               | BUCC-01     | Project #:_195601363                                           |        |  |  |
| Date: 07/18/19                                              | Investigate | pr: <mark>PMH</mark>                                           |        |  |  |
| SUMMARY OF FUNCTIONAL E<br>Each function gets a score of 0= |             | <u>N:</u><br>t; L = Low; P = Present; or H = High.             |        |  |  |
| 1. Water Storage for Flood Water and<br>Storm Runoff        | Ρ           | 6. Rare, Threatened, and Endangered<br>Species Habitat         | 0      |  |  |
|                                                             |             |                                                                |        |  |  |
| 2. Surface & Ground Water Protection                        | L           | 7. Education and Research in Natural<br>Sciences               | 0      |  |  |
|                                                             |             |                                                                |        |  |  |
| 3. Fish Habitat                                             | 0           | 8. Recreational Value and Economic<br>Benefits                 | 0      |  |  |
|                                                             |             |                                                                |        |  |  |
| 4. Wildlife Habitat                                         | Р           | 9. Open Space and Aesthetics                                   | 0      |  |  |
|                                                             |             |                                                                |        |  |  |
| 5. Exemplary Wetland Natural<br>Community                   | 0           | 10. Erosion Control through Binding an<br>Stabilizing the Soil | d<br>L |  |  |

### Note:

- When to use this form: This is a field form to help you compile data needed to evaluate the 10 possible functions and values of a wetland as described in the Vermont Wetland Rules. All information in this form is replicated in the applications for both wetland determinations and wetland permits.
- Both a desktop review and field examination should be employed to accurately determine surrounding land use, hydrology, hydroperiod, vegetation, position in the landscape, and physical attributes.
- **The entire wetland or wetland complex** in question must be evaluated to determine the level of function in all ten (10) categories for accurate classification. A wetland complex can be defined as a series of interconnected wetland types.
- **The surrounding upland and outflow area** of the wetland should be examined to determine land use, development, nearby natural resources, and hydrology. The surrounding land use, previous development, and cumulative impacts may play a role in the current function of the wetland. For best results please read all descriptions prior to scoring activity.
- **Evaluation**: The first portion in each section determines whether the wetland does or does not provide the function. If none of the conditions listed in the first section are met, proceed

to the next section. If any of these conditions are met, determine if the wetland provides this function at a higher or lower level based on the information listed in the subsequent sections.

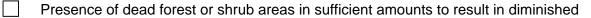
- **Presumptions:** Please note that many wetlands are already presumed to be significant under the Vermont Wetland Rules. A wetland is presumed to be significant if:
  - o The wetland is mapped on the VSWI map
  - o The wetland is contiguous to a VSWI mapped wetland
  - The wetland meets the presumptions of significance under Section 4.6
  - o The wetland has a preliminary determination that it is Class II

## 1. Water Storage for Flood Water and Storm Runoff

| Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function. |                                                                                                                                                                                                                                                        |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                                                                                             | Constricted outlet or no outlet and an unconstricted inlet.                                                                                                                                                                                            |  |  |  |  |  |
|                                                                                                                                                             | Physical space for floodwater expansion and dense, persistent, emergent vegetation<br>or dense woody vegetation that slows down flood waters or stormwater runoff during<br>peak flows and facilitates water removal by evaporation and transpiration. |  |  |  |  |  |
|                                                                                                                                                             | If a stream is present, its course is sinuous and there is sufficient woody vegetation to intercept surface flows in the portion of the wetland that floods.                                                                                           |  |  |  |  |  |
|                                                                                                                                                             | Physical evidence of seasonal flooding or ponding such as water stained leaves, water marks on trees, drift rows, debris deposits, or standing water.                                                                                                  |  |  |  |  |  |
|                                                                                                                                                             | Hydrologic or hydraulic study indicates wetland attenuates flooding.                                                                                                                                                                                   |  |  |  |  |  |
|                                                                                                                                                             | y of the above boxes are checked, the wetland provides this function. Complete the<br>wing to determine if the wetland provides this function above or below a moderate<br>:                                                                           |  |  |  |  |  |
|                                                                                                                                                             | k box if any of the following conditions apply that may indicate the wetland provides function at a <i>lower</i> level.                                                                                                                                |  |  |  |  |  |
|                                                                                                                                                             | Significant flood storage capacity upstream of the wetland, and the wetland in question provides this function at a negligible level in comparison to upstream storage (unless the upstream storage is temporary such as a beaver impoundment).        |  |  |  |  |  |
|                                                                                                                                                             | Wetland is contiguous to a major lake or pond that provides storage benefits independently of the wetland.                                                                                                                                             |  |  |  |  |  |
|                                                                                                                                                             | Wetland's storage capacity is created primarily by recent beaver dams or other temporary structures.                                                                                                                                                   |  |  |  |  |  |
|                                                                                                                                                             | Wetland is very small in size, not contiguous to a stream, and not part of a collection of small wetlands in the landscape that provide this function cumulatively.                                                                                    |  |  |  |  |  |
|                                                                                                                                                             | k box if any of the following conditions apply that may indicate the wetland provides function at a <i>higher</i> level.                                                                                                                               |  |  |  |  |  |
|                                                                                                                                                             | History of downstream flood damage to public or private property.                                                                                                                                                                                      |  |  |  |  |  |
|                                                                                                                                                             | Any of the following conditions present downstream of the wetland, but upstream of a major lake or pond, could be impacted by a loss or reduction of the water storage function.                                                                       |  |  |  |  |  |
|                                                                                                                                                             | 1. Developed public or private property.                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                                                                                             | 2. Stream banks susceptible to scouring and erosion.                                                                                                                                                                                                   |  |  |  |  |  |
|                                                                                                                                                             | 3. Important habitat for aquatic life.                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                                                                                                                             | The wetland is large in size and naturally vegetated.                                                                                                                                                                                                  |  |  |  |  |  |

| Any of the following conditions present upstream of the wetland may indicate a large |
|--------------------------------------------------------------------------------------|
| volume of runoff may reach the wetland.                                              |

- 1. A large amount of impervious surface in urbanized areas.
  - 2. Relatively impervious soils.
  - 3. Steep slopes in the adjacent areas.


### 2. Surface and Ground Water Protection

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

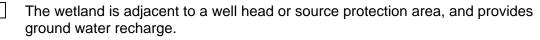
| Constricted or no outlets.                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Low water velocity through dense, persistent vegetation.                                                                                                                                                                                                                                                                                                                                          |
| Hydroperiod permanently flooded or saturated.                                                                                                                                                                                                                                                                                                                                                     |
| Wetlands in depositional environments with persistent vegetation wider than 20 feet.                                                                                                                                                                                                                                                                                                              |
| Wetlands with persistent vegetation comprising a defined delta, island, bar or peninsula.                                                                                                                                                                                                                                                                                                         |
| Presence of seeps or springs.                                                                                                                                                                                                                                                                                                                                                                     |
| Wetland contains a high amount of microtopography that helps slow and filter surface water.                                                                                                                                                                                                                                                                                                       |
| Position in the landscape indicates the wetland is a headwaters area.                                                                                                                                                                                                                                                                                                                             |
| Wetland is adjacent to surface waters.                                                                                                                                                                                                                                                                                                                                                            |
| Wetland recharges a drinking water source.                                                                                                                                                                                                                                                                                                                                                        |
| Water sampling indicates removal of pollutants or nutrients.                                                                                                                                                                                                                                                                                                                                      |
| Water sampling indicates retention of sediments or organic matter.                                                                                                                                                                                                                                                                                                                                |
| Fine mineral soils and alkalinity not low.                                                                                                                                                                                                                                                                                                                                                        |
| The wetland provides an obvious filter between surface water or ground water and<br>land uses that may contribute point or nonpoint sources of sediments, toxic<br>substances or nutrients to the wetland, such as: steep erodible slopes; row crops;<br>dumps; areas of pesticide, herbicide or fertilizer application; feed lots; parking lots or<br>heavily traveled road; and septic systems. |

If any of the above boxes are checked, the wetland provides this function. Complete the following to determine if the wetland provides this function above or below a moderate level.

Check box if any of the following conditions apply that may indicate the wetland provides this function at a *lower* level.



| 9/1 | 4/ | 20 | 1 | 0 |
|-----|----|----|---|---|
|-----|----|----|---|---|


nutrient uptake.

| Presence of ditches or channels that confine water and restrict contact of water with |
|---------------------------------------------------------------------------------------|
| vegetation.                                                                           |

Wetland is very small in size, not contiguous to a stream, and not part of a collection of small wetlands in the landscape that provide this function cumulatively.

Current use in the wetland results in disturbance that compromises this function.

Check box if any of the following conditions apply that may indicate the wetland provides this function at a *higher* level.



The wetland provides flows to Class A surface waters.



The wetland contributes to the protection or improvement of water quality of any impaired waters.

The wetland is large in size and naturally vegetated.

### 3. Fish Habitat

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

Contains woody vegetation that overhangs the banks of a stream or river and provides any of the following: shading that controls summer water temperature; cover including refuges created by overhanging branches or undercut banks; source of terrestrial insects as fish food; or streambank stability.

Provides spawning, nursery, feeding or cover habitat for fish (documented or professionally judged). Common habitat includes deep marsh and shallow marsh associates with lakes and streams, and seasonally flooded wetlands associated with streams and rivers.

Documented or professionally judged spawning habitat for northern pike.

Provides cold spring discharge that lowers the temperature of receiving waters and creates summer habitat for salmonoid species.

The wetland is located along a tributary that does not support fish, but contributes to a larger body of water that does support fish. The tributary supports downstream fish by providing cooler water, and food sources.

### 4. Wildlife Habitat

|  | ction is present and likely to be significant: Any of the following physical and vegetative acteristics indicate the wetland provides this function.                                                                                                                                                                                                                                 |
|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | Provides resting, feeding staging or roosting habitat to support waterfowl migration, and feeding habitat for wading birds. Good habitats for these species include open water wetlands.                                                                                                                                                                                             |
|  | Habitat to support one or more breeding pairs or broods of waterfowl including all species of ducks, geese, and swans. Good habitats for these species include open water habitats adjacent shallow marsh, deep marsh, shrub wetland, forested wetland, or naturally vegetated buffer zone.                                                                                          |
|  | Provides a nest site, a buffer for a nest site or feeding habitat for wading birds including but not limited to: great blue heron, black-crowned night heron, green-backed heron, cattle egret, or snowy egret. Good habitats for these species include open water or deep marsh adjacent to forested wetlands, or standing dead trees.                                              |
|  | Supports or has the habitat to support one or more breeding pairs of any migratory<br>bird that requires wetland habitat for breeding, nesting, rearing of young, feeding,<br>staging roosting, or migration, including: Virginia rail, common snipe, marsh wren,<br>American bittern, northern water thrush, northern harrier, spruce grouse, Cerulean<br>warbler, and common loon. |
|  | Supports winter habitat for white-tailed deer. Good habitats for these species include softwood swamps. Evidence of use includes deer browsing, bark stripping, worn trails, or pellet piles.                                                                                                                                                                                        |
|  | Provides important feeding habitat for black bear, bobcat, or moose based on an assessment of use. Good habitat for these types of species includes wetlands located in a forested mosaic.                                                                                                                                                                                           |
|  | Has the habitat to support muskrat, otter or mink. Good habitats for these species include deep marshes, wetlands adjacent to bodies of water including lakes, ponds, rivers and streams.                                                                                                                                                                                            |
|  | Supports an active beaver dam, one or more lodges, or evidence of use in two or more consecutive years by an adult beaver population.                                                                                                                                                                                                                                                |
|  | Provides the following habitats that support the reproduction of Uncommon Vermont amphibian species including:                                                                                                                                                                                                                                                                       |
|  | 1. Wood Frog, Jefferson Salamander, Blue-spotted Salamander, or Spotted<br>Salamander. Breeding habitat for these species includes vernal pools and<br>small ponds.                                                                                                                                                                                                                  |
|  | 2. Northern Dusky Salamander and the Spring Salamander. Habitat for these species includes headwater seeps, springs, and streams.                                                                                                                                                                                                                                                    |
|  | 3. The Four-toed salamander; Fowler's Toad; Western or Boreal Chorus frog, or other amphibians found in Vermont of similar significance.                                                                                                                                                                                                                                             |

| 9/1 | 4/20 <sup>-</sup> | Suppo<br>specie<br>and ot | es includii<br>hers four     | s the habitat to support significant populations of Ve<br>ng, but not limited to Pickerel Frog, Northern Leopa<br>nd in Vermont of similar significance. Good habitat<br>es large marsh systems with open water component | rd Frog, Mink Frog,<br>for these types of |
|-----|-------------------|---------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
|     |                   | specie<br>Turtle,         | s includii<br>Spiny S        | s the habitat to support populations of uncommon V<br>ng: Wood Turtle, Northern Map Turtle, Eastern Mus<br>oftshell, Eastern Ribbonsnake, Northern Watersnak<br>similar significance.                                     | sk Turtle, Spotted                        |
|     |                   | specie                    | s, includi                   | s the habitat to support significant populations of Ve<br>ing Smooth Greensnake, DeKay's Brownsnake, or o<br>nd-associated species.                                                                                       | •                                         |
|     |                   | Meets                     | four or m                    | nore of the following conditions indicative of wildlife                                                                                                                                                                   | habitat diversity:                        |
|     |                   | <b>□</b> 1.               | includin                     | r more wetland vegetation classes (greater than 1/2<br>og but not limited to: open water contiguous to, but n<br>wetland, deep marsh, shallow marsh, shrub swamp,<br>pog;                                                 | ot necessarily part                       |
|     |                   | 2.                        |                              | minant vegetation class is one of the following types<br>marsh, shrub swamp or, forested swamp;                                                                                                                           | : deep marsh,                             |
|     |                   | 3.                        | Located                      | adjacent to a lake, pond, river or stream;                                                                                                                                                                                |                                           |
|     |                   | <b>4</b> .                | •••                          | rcent or more of surrounding habitat type is one or r<br>g: forest, agricultural land, old field or open land;                                                                                                            | nore of the                               |
|     |                   | 5.                        | Emerge<br>is open            | ent or woody vegetation occupies 26 to 75 percent o water;                                                                                                                                                                | f wetland, the rest                       |
|     |                   | <b>6</b> .                | One of t                     | the following:                                                                                                                                                                                                            |                                           |
|     |                   |                           |                              | hydrologically connected to other wetlands of differe<br>classes or open water within 1 mile;                                                                                                                             | ent dominant                              |
|     |                   |                           |                              | hydrologically connected to other wetlands of same within 1/2 mile;                                                                                                                                                       | dominant class                            |
|     |                   |                           |                              | within 1/4 mile of other wetlands of different dominal water, but not hydrologically connected;                                                                                                                           | nt classes or open                        |
|     |                   |                           |                              | land complex is owned in whole or in part by state on the state of managed for wildlife and habitat conservation; an                                                                                                      |                                           |
|     |                   | Contair                   | ns eviden                    | nce that it is used by wetland dependent wildlife spe                                                                                                                                                                     | cies.                                     |
|     |                   | wing to                   |                              | oxes are checked, the wetland provides this function<br>the if the wetland provides this function above or belo                                                                                                           |                                           |
|     |                   |                           | any of th<br>at a <i>low</i> | ne following conditions apply that may indicate the v<br><i>er</i> level.                                                                                                                                                 | vetland provides                          |
|     |                   | The we                    | etland is                    | small in size for its type and does not represent fug                                                                                                                                                                     | itive habitat in                          |

| 9/1 | 4/20 | 10                                                                                                                                                                                 |
|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |      | developed areas (vernal pools and seeps are generally small in size, so this does not apply).                                                                                      |
|     |      | The surrounding land use is densely developed enough to limit use by wildlife species (with the exception of wetlands with open water habitat). Can be negated by evidence of use. |
|     |      | The current use in the wetland results in frequent cutting, mowing or other disturbance.                                                                                           |
|     |      | The wetland hydrology and character is at a drier end of the scale and does not support wetland dependent species.                                                                 |
|     |      | ck box if any of the following conditions apply that may indicate the wetland provides function at a <i>higher</i> level.                                                          |
|     |      | The wetland complex is large in size and high in quality.                                                                                                                          |
|     |      | The habitat has the potential to support several species based on the assessment above.                                                                                            |
|     |      | Wetland is associated with an important wildlife corridor.                                                                                                                         |
|     |      | The wetland has been identified by ANR-F&W as important habitat.                                                                                                                   |
|     |      |                                                                                                                                                                                    |

### 5. Exemplary Wetland Natural Community

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

| Wetlands that are identified as high quality examples of Vermont's natural community  |
|---------------------------------------------------------------------------------------|
| types recognized by the Natural Heritage Information Project of the Vermont Fish and  |
| Wildlife Department, including rare types such as dwarf shrub bogs, rich fens, alpine |
| peatlands, red maple-black gum swamps and the more common types including deep        |
| bulrush marshes, cattail marshes, northern white cedar swamps, spruce-fir-tamarack    |
| swamps, and red maple-black ash seepage swamps are automatically significant for      |
| this function.                                                                        |

The wetland is also likely to be significant if any of the following conditions are met:

| Is an example of a wetland natural community type that has been identified and |
|--------------------------------------------------------------------------------|
| mapped by, or meets the ranking and mapping standards of, the Natural Heritage |
| Information Project of the Vermont Fish and Wildlife Department.               |

- Contains ecological features that contribute to Vermont's natural heritage, including, but not limited to:
  - Deep peat accumulation reflecting a long history of wetland formation;
    - Forested wetlands displaying very old trees and other old growth characteristics;
  - A wetland natural community that is at the edge of the normal range for that type;

A wetland mosaic containing examples of several to many wetland community types; or

A large wetland complex with examples of several wetland community types.

### 6. Rare, Threatened, and Endangered Species Habitat

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

Wetlands that contain one or more species on the federal or state threatened or endangered lists, as well as species that are rare in Vermont, are automatically significant for this function.

The wetland is also likely to be significant if any of the following apply:

] There is creditable documentation that the wetland provides important habitat for any species on the federal or state threatened or endangered species lists;

There is creditable documentation that threatened or endangered species have been present in past 10 years;

] There is creditable documentation that the wetland provides important habitat for any species listed as rare in Vermont (S1 or S2 ranks), state historic (SH rank), or rare to uncommon globally (G1, G2, or G3 ranks) by the Natural Heritage Information Project of the Vermont Fish and Wildlife Department;

There is creditable documentation that the wetland provides habitat for multiple uncommon species of plants or animals (S3 rank).

List name of species and ranking:

### 7. Education and Research in Natural Sciences

Function is present and likely to be significant: Any of the following characteristics indicate the wetland provides this function.

Owned by or leased to a public entity dedicated to education or research.



History of use for education or research.

Has one or more characteristics making it valuable for education or research.

| 8. | R                                                                                                                                 | ecreational Value and Economic Benefits                                                                            |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|
|    | Function is present and likely to be significant: Any of the following characteristics indica the wetland provides this function. |                                                                                                                    |  |
|    |                                                                                                                                   | Used for, or contributes to, recreational activities.                                                              |  |
|    |                                                                                                                                   | Provides economic benefits.                                                                                        |  |
|    |                                                                                                                                   | Provides important habitat for fish or wildlife which can be fished, hunted or trapped under applicable state law. |  |
|    |                                                                                                                                   | Used for harvesting of wild foods.                                                                                 |  |
|    |                                                                                                                                   |                                                                                                                    |  |

Comments:

#### 9. **Open Space and Aesthetics**

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

Can be readily observed by the public; and

Possesses special or unique aesthetic qualities; or

Has prominence as a distinct feature in the surrounding landscape;

Has been identified as important open space in a municipal, regional or state plan.

#### 10. **Erosion Control through Binding and Stabilizing the Soil**

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

Erosive forces such as wave or current energy are present and any of the following are present as well:

Dense, persistent vegetation along a shoreline or stream bank that reduces an adjacent erosive force.

Good interspersion of persistent emergent vegetation and water along course of water flow.

Studies show that wetlands of similar size, vegetation type, and hydrology are important for erosion control.

What type of erosive forces are present?

Lake fetch and waves

High current velocities

Water level influenced by upstream impoundment

If any of the above boxes are checked, the wetland provides this function. Complete the following to determine if the wetland provides this function above or below a moderate level.

Check box if any of the following conditions apply that may indicate the wetland provides this function at a *lower* level.



The stream is artificially channelized and/or lacks vegetation that contributes to controlling the erosive force.

Check box if any of the following conditions apply that may indicate the wetland provides this function at a *higher* level.

The stream contains high sinuosity.

Has been identified through fluvial geomorphic assessment to be important in maintaining the natural condition of the stream or river corridor.

| VERMONT WETLAND EVALUATION FORM                             |             |                                                                 |        |  |  |  |  |  |
|-------------------------------------------------------------|-------------|-----------------------------------------------------------------|--------|--|--|--|--|--|
| Project Name:                                               | BCC NH-0    | Project #: 195601363                                            |        |  |  |  |  |  |
| Date: 10/11/2017                                            | Investigato | or: SCS                                                         |        |  |  |  |  |  |
| SUMMARY OF FUNCTIONAL E<br>Each function gets a score of 0= |             | <u>N:</u><br>t; L = Low; P = Present; or H = High.              |        |  |  |  |  |  |
| 1. Water Storage for Flood Water and<br>Storm Runoff        | L           | 6. Rare, Threatened, and Endangered<br>Species Habitat          | 0      |  |  |  |  |  |
|                                                             |             |                                                                 |        |  |  |  |  |  |
| 2. Surface & Ground Water Protection                        | L           | 7. Education and Research in Natural<br>Sciences                | 0      |  |  |  |  |  |
|                                                             |             |                                                                 |        |  |  |  |  |  |
| 3. Fish Habitat                                             | 0           | 8. Recreational Value and Economic<br>Benefits                  | 0      |  |  |  |  |  |
|                                                             |             |                                                                 |        |  |  |  |  |  |
| 4. Wildlife Habitat                                         | 0           | 9. Open Space and Aesthetics                                    | 0      |  |  |  |  |  |
|                                                             |             |                                                                 |        |  |  |  |  |  |
| 5. Exemplary Wetland Natural<br>Community                   | 0           | 10. Erosion Control through Binding and<br>Stabilizing the Soil | d<br>O |  |  |  |  |  |

### Note:

- When to use this form: This is a field form to help you compile data needed to evaluate the 10 possible functions and values of a wetland as described in the Vermont Wetland Rules. All information in this form is replicated in the applications for both wetland determinations and wetland permits.
- Both a desktop review and field examination should be employed to accurately determine surrounding land use, hydrology, hydroperiod, vegetation, position in the landscape, and physical attributes.
- **The entire wetland or wetland complex** in question must be evaluated to determine the level of function in all ten (10) categories for accurate classification. A wetland complex can be defined as a series of interconnected wetland types.
- The surrounding upland and outflow area of the wetland should be examined to determine land use, development, nearby natural resources, and hydrology. The surrounding land use, previous development, and cumulative impacts may play a role in the current function of the wetland. For best results please read all descriptions prior to scoring activity.
- *Evaluation*: The first portion in each section determines whether the wetland does or does not provide the function. If none of the conditions listed in the first section are met, proceed

to the next section. If any of these conditions are met, determine if the wetland provides this function at a higher or lower level based on the information listed in the subsequent sections.

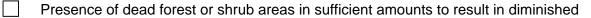
- **Presumptions:** Please note that many wetlands are already presumed to be significant under the Vermont Wetland Rules. A wetland is presumed to be significant if:
  - o The wetland is mapped on the VSWI map
  - o The wetland is contiguous to a VSWI mapped wetland
  - The wetland meets the presumptions of significance under Section 4.6
  - o The wetland has a preliminary determination that it is Class II

# 1. Water Storage for Flood Water and Storm Runoff

| Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function. |                                                                                                                                                                                                                                                        |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                             | Constricted outlet or no outlet and an unconstricted inlet.                                                                                                                                                                                            |  |  |
|                                                                                                                                                             | Physical space for floodwater expansion and dense, persistent, emergent vegetation<br>or dense woody vegetation that slows down flood waters or stormwater runoff during<br>peak flows and facilitates water removal by evaporation and transpiration. |  |  |
|                                                                                                                                                             | If a stream is present, its course is sinuous and there is sufficient woody vegetation to intercept surface flows in the portion of the wetland that floods.                                                                                           |  |  |
|                                                                                                                                                             | Physical evidence of seasonal flooding or ponding such as water stained leaves, water marks on trees, drift rows, debris deposits, or standing water.                                                                                                  |  |  |
|                                                                                                                                                             | Hydrologic or hydraulic study indicates wetland attenuates flooding.                                                                                                                                                                                   |  |  |
|                                                                                                                                                             | y of the above boxes are checked, the wetland provides this function. Complete the<br>wing to determine if the wetland provides this function above or below a moderate<br>:                                                                           |  |  |
|                                                                                                                                                             | k box if any of the following conditions apply that may indicate the wetland provides unction at a <i>lower</i> level.                                                                                                                                 |  |  |
|                                                                                                                                                             | Significant flood storage capacity upstream of the wetland, and the wetland in question provides this function at a negligible level in comparison to upstream storage (unless the upstream storage is temporary such as a beaver impoundment).        |  |  |
|                                                                                                                                                             | Wetland is contiguous to a major lake or pond that provides storage benefits independently of the wetland.                                                                                                                                             |  |  |
|                                                                                                                                                             | Wetland's storage capacity is created primarily by recent beaver dams or other temporary structures.                                                                                                                                                   |  |  |
|                                                                                                                                                             | Wetland is very small in size, not contiguous to a stream, and not part of a collection of small wetlands in the landscape that provide this function cumulatively.                                                                                    |  |  |
|                                                                                                                                                             | k box if any of the following conditions apply that may indicate the wetland provides unction at a <i>higher</i> level.                                                                                                                                |  |  |
|                                                                                                                                                             | History of downstream flood damage to public or private property.                                                                                                                                                                                      |  |  |
|                                                                                                                                                             | Any of the following conditions present downstream of the wetland, but upstream of a major lake or pond, could be impacted by a loss or reduction of the water storage function.                                                                       |  |  |
|                                                                                                                                                             | 1. Developed public or private property.                                                                                                                                                                                                               |  |  |
|                                                                                                                                                             | 2. Stream banks susceptible to scouring and erosion.                                                                                                                                                                                                   |  |  |
|                                                                                                                                                             | 3. Important habitat for aquatic life.                                                                                                                                                                                                                 |  |  |
|                                                                                                                                                             | The wetland is large in size and naturally vegetated.                                                                                                                                                                                                  |  |  |

| Any of the following conditions present upstream of the wetland may indicate a large |
|--------------------------------------------------------------------------------------|
| volume of runoff may reach the wetland.                                              |

- 1. A large amount of impervious surface in urbanized areas.
  - 2. Relatively impervious soils.
  - 3. Steep slopes in the adjacent areas.


#### 2. Surface and Ground Water Protection

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

| Unan | actensites indicate the wetland provides this function.                                                                                                                                                                                                                                                                                                                                           |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Constricted or no outlets.                                                                                                                                                                                                                                                                                                                                                                        |
|      | Low water velocity through dense, persistent vegetation.                                                                                                                                                                                                                                                                                                                                          |
|      | Hydroperiod permanently flooded or saturated.                                                                                                                                                                                                                                                                                                                                                     |
|      | Wetlands in depositional environments with persistent vegetation wider than 20 feet.                                                                                                                                                                                                                                                                                                              |
|      | Wetlands with persistent vegetation comprising a defined delta, island, bar or peninsula.                                                                                                                                                                                                                                                                                                         |
|      | Presence of seeps or springs.                                                                                                                                                                                                                                                                                                                                                                     |
|      | Wetland contains a high amount of microtopography that helps slow and filter surface water.                                                                                                                                                                                                                                                                                                       |
|      | Position in the landscape indicates the wetland is a headwaters area.                                                                                                                                                                                                                                                                                                                             |
|      | Wetland is adjacent to surface waters.                                                                                                                                                                                                                                                                                                                                                            |
|      | Wetland recharges a drinking water source.                                                                                                                                                                                                                                                                                                                                                        |
|      | Water sampling indicates removal of pollutants or nutrients.                                                                                                                                                                                                                                                                                                                                      |
|      | Water sampling indicates retention of sediments or organic matter.                                                                                                                                                                                                                                                                                                                                |
|      | Fine mineral soils and alkalinity not low.                                                                                                                                                                                                                                                                                                                                                        |
|      | The wetland provides an obvious filter between surface water or ground water and<br>land uses that may contribute point or nonpoint sources of sediments, toxic<br>substances or nutrients to the wetland, such as: steep erodible slopes; row crops;<br>dumps; areas of pesticide, herbicide or fertilizer application; feed lots; parking lots or<br>heavily traveled road; and septic systems. |

If any of the above boxes are checked, the wetland provides this function. Complete the following to determine if the wetland provides this function above or below a moderate level.

Check box if any of the following conditions apply that may indicate the wetland provides this function at a *lower* level.



| 9/1 | 4/20 | 10                                                                                                                                                                  |
|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |      | nutrient uptake.                                                                                                                                                    |
|     |      | Presence of ditches or channels that confine water and restrict contact of water with vegetation.                                                                   |
|     |      | Wetland is very small in size, not contiguous to a stream, and not part of a collection of small wetlands in the landscape that provide this function cumulatively. |
|     |      | Current use in the wetland results in disturbance that compromises this function.                                                                                   |
|     |      | k box if any of the following conditions apply that may indicate the wetland provides function at a <i>higher</i> level.                                            |
|     |      | The wetland is adjacent to a well head or source protection area, and provides ground water recharge.                                                               |
|     |      | The wetland provides flows to Class A surface waters.                                                                                                               |
|     |      | The wetland contributes to the protection or improvement of water quality of any impaired waters.                                                                   |
|     |      | The wetland is large in size and naturally vegetated.                                                                                                               |

### 3. Fish Habitat

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

Contains woody vegetation that overhangs the banks of a stream or river and provides any of the following: shading that controls summer water temperature; cover including refuges created by overhanging branches or undercut banks; source of terrestrial insects as fish food; or streambank stability.

Provides spawning, nursery, feeding or cover habitat for fish (documented or professionally judged). Common habitat includes deep marsh and shallow marsh associates with lakes and streams, and seasonally flooded wetlands associated with streams and rivers.

| Documented | or professionally | v judged s | spawning h | habitat for no | orthern pike. |
|------------|-------------------|------------|------------|----------------|---------------|
|            |                   |            |            |                |               |

Provides cold spring discharge that lowers the temperature of receiving waters and creates summer habitat for salmonoid species.

| The wetland is located along a tributary that does not support fish, but contributes to |
|-----------------------------------------------------------------------------------------|
| a larger body of water that does support fish. The tributary supports downstream fish   |
| by providing cooler water, and food sources.                                            |

# 4. Wildlife Habitat

| inction is present and likely to be significant: Any of the following physical and vegetative aracteristics indicate the wetland provides this function.                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Provides resting, feeding staging or roosting habitat to support waterfowl migration, and feeding habitat for wading birds. Good habitats for these species include open water wetlands.                                                                                                                                                                                             |
| Habitat to support one or more breeding pairs or broods of waterfowl including all species of ducks, geese, and swans. Good habitats for these species include open water habitats adjacent shallow marsh, deep marsh, shrub wetland, forested wetland, or naturally vegetated buffer zone.                                                                                          |
| Provides a nest site, a buffer for a nest site or feeding habitat for wading birds including but not limited to: great blue heron, black-crowned night heron, green-backed heron, cattle egret, or snowy egret. Good habitats for these species include open water or deep marsh adjacent to forested wetlands, or standing dead trees.                                              |
| Supports or has the habitat to support one or more breeding pairs of any migratory<br>bird that requires wetland habitat for breeding, nesting, rearing of young, feeding,<br>staging roosting, or migration, including: Virginia rail, common snipe, marsh wren,<br>American bittern, northern water thrush, northern harrier, spruce grouse, Cerulean<br>warbler, and common loon. |
| Supports winter habitat for white-tailed deer. Good habitats for these species include softwood swamps. Evidence of use includes deer browsing, bark stripping, worn trails, or pellet piles.                                                                                                                                                                                        |
| Provides important feeding habitat for black bear, bobcat, or moose based on an assessment of use. Good habitat for these types of species includes wetlands located in a forested mosaic.                                                                                                                                                                                           |
| Has the habitat to support muskrat, otter or mink. Good habitats for these species include deep marshes, wetlands adjacent to bodies of water including lakes, ponds, rivers and streams.                                                                                                                                                                                            |
| Supports an active beaver dam, one or more lodges, or evidence of use in two or more consecutive years by an adult beaver population.                                                                                                                                                                                                                                                |
| Provides the following habitats that support the reproduction of Uncommon Vermont<br>amphibian species including:                                                                                                                                                                                                                                                                    |
| <ol> <li>Wood Frog, Jefferson Salamander, Blue-spotted Salamander, or Spotted<br/>Salamander. Breeding habitat for these species includes vernal pools and<br/>small ponds.</li> </ol>                                                                                                                                                                                               |
| 2. Northern Dusky Salamander and the Spring Salamander. Habitat for these species includes headwater seeps, springs, and streams.                                                                                                                                                                                                                                                    |
| 3. The Four-toed salamander; Fowler's Toad; Western or Boreal Chorus frog, or<br>other amphibians found in Vermont of similar significance.                                                                                                                                                                                                                                          |

| 9/1 | 4 <u>/2</u> 0 |                   |                                                                                                                                                                                                                                                                                                                    |
|-----|---------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |               | specie<br>and ot  | rts or has the habitat to support significant populations of Vermont amphibian<br>s including, but not limited to Pickerel Frog, Northern Leopard Frog, Mink Frog,<br>hers found in Vermont of similar significance. Good habitat for these types of<br>s includes large marsh systems with open water components. |
|     |               | specie<br>Turtle, | rts or has the habitat to support populations of uncommon Vermont reptile<br>s including: Wood Turtle, Northern Map Turtle, Eastern Musk Turtle, Spotted<br>Spiny Softshell, Eastern Ribbonsnake, Northern Watersnake, and others found<br>nont of similar significance.                                           |
|     |               | specie            | rts or has the habitat to support significant populations of Vermont reptile<br>s, including Smooth Greensnake, DeKay's Brownsnake, or other more<br>on wetland-associated species.                                                                                                                                |
|     |               | Meets             | four or more of the following conditions indicative of wildlife habitat diversity:                                                                                                                                                                                                                                 |
|     |               | <u> </u>          | Three or more wetland vegetation classes (greater than 1/2 acre) present including but not limited to: open water contiguous to, but not necessarily part of, the wetland, deep marsh, shallow marsh, shrub swamp, forested swamp, fen, or bog;                                                                    |
|     |               | 2.                | The dominant vegetation class is one of the following types: deep marsh, shallow marsh, shrub swamp or, forested swamp;                                                                                                                                                                                            |
|     |               | 3.                | Located adjacent to a lake, pond, river or stream;                                                                                                                                                                                                                                                                 |
|     |               | <b>4</b> .        | Fifty percent or more of surrounding habitat type is one or more of the following: forest, agricultural land, old field or open land;                                                                                                                                                                              |
|     |               | 5.                | Emergent or woody vegetation occupies 26 to 75 percent of wetland, the rest is open water;                                                                                                                                                                                                                         |
|     |               | 6.                | One of the following:                                                                                                                                                                                                                                                                                              |
|     |               |                   | i. hydrologically connected to other wetlands of different dominant classes or open water within 1 mile;                                                                                                                                                                                                           |
|     |               |                   | ii. hydrologically connected to other wetlands of same dominant class within 1/2 mile;                                                                                                                                                                                                                             |
|     |               |                   | iii. within 1/4 mile of other wetlands of different dominant classes or open water, but not hydrologically connected;                                                                                                                                                                                              |
|     |               |                   | d or wetland complex is owned in whole or in part by state or federal ment and managed for wildlife and habitat conservation; and                                                                                                                                                                                  |
|     |               | Contair           | is evidence that it is used by wetland dependent wildlife species.                                                                                                                                                                                                                                                 |
|     |               | wing to           | above boxes are checked, the wetland provides this function. Complete the determine if the wetland provides this function above or below a moderate                                                                                                                                                                |
|     |               |                   | any of the following conditions apply that may indicate the wetland provides at a <i>lower</i> level.                                                                                                                                                                                                              |
|     |               | The we            | etland is small in size for its type and does not represent fugitive habitat in                                                                                                                                                                                                                                    |

| 9/1 | 4/20                                                                                                                              | 10                                                                                                                                                                                 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                   | developed areas (vernal pools and seeps are generally small in size, so this does not apply).                                                                                      |
|     |                                                                                                                                   | The surrounding land use is densely developed enough to limit use by wildlife species (with the exception of wetlands with open water habitat). Can be negated by evidence of use. |
|     |                                                                                                                                   | The current use in the wetland results in frequent cutting, mowing or other disturbance.                                                                                           |
|     |                                                                                                                                   | The wetland hydrology and character is at a drier end of the scale and does not support wetland dependent species.                                                                 |
|     | Check box if any of the following conditions apply that may indicate the wetland provides this function at a <i>higher</i> level. |                                                                                                                                                                                    |
|     |                                                                                                                                   | The wetland complex is large in size and high in quality.                                                                                                                          |
|     |                                                                                                                                   | The habitat has the potential to support several species based on the assessment above.                                                                                            |
|     |                                                                                                                                   | Wetland is associated with an important wildlife corridor.                                                                                                                         |
|     |                                                                                                                                   | The wetland has been identified by ANR-F&W as important habitat.                                                                                                                   |
|     |                                                                                                                                   |                                                                                                                                                                                    |

## 5. Exemplary Wetland Natural Community

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

| Wetlands that are identified as high quality examples of Vermont's natural community types recognized by the Natural Heritage Information Project of the Vermont Fish and |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                           |
| Wildlife Department, including rare types such as dwarf shrub bogs, rich fens, alpine                                                                                     |
| peatlands, red maple-black gum swamps and the more common types including deep                                                                                            |
| bulrush marshes, cattail marshes, northern white cedar swamps, spruce-fir-tamarack                                                                                        |
| swamps, and red maple-black ash seepage swamps are automatically significant for                                                                                          |
| this function.                                                                                                                                                            |
|                                                                                                                                                                           |

The wetland is also likely to be significant if any of the following conditions are met:

| Is an example of a wetland natural community type that has been identified and |
|--------------------------------------------------------------------------------|
| mapped by, or meets the ranking and mapping standards of, the Natural Heritage |
| Information Project of the Vermont Fish and Wildlife Department.               |

Contains ecological features that contribute to Vermont's natural heritage, including, but not limited to:

Deep peat accumulation reflecting a long history of wetland formation;

| $\square$ | Forested wetlands displaying very | old trees and | other old growth | characteristics; |
|-----------|-----------------------------------|---------------|------------------|------------------|
|           | i olooloo wolanao aloplaying vory |               | i oli ola giomin | onalaotonotioo,  |

A wetland natural community that is at the edge of the normal range for that type;

A wetland mosaic containing examples of several to many wetland community types; or

A large wetland complex with examples of several wetland community types.

## 6. Rare, Threatened, and Endangered Species Habitat

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

Wetlands that contain one or more species on the federal or state threatened or endangered lists, as well as species that are rare in Vermont, are automatically significant for this function.

The wetland is also likely to be significant if any of the following apply:

] There is creditable documentation that the wetland provides important habitat for any species on the federal or state threatened or endangered species lists;

There is creditable documentation that threatened or endangered species have been present in past 10 years;

] There is creditable documentation that the wetland provides important habitat for any species listed as rare in Vermont (S1 or S2 ranks), state historic (SH rank), or rare to uncommon globally (G1, G2, or G3 ranks) by the Natural Heritage Information Project of the Vermont Fish and Wildlife Department;

There is creditable documentation that the wetland provides habitat for multiple uncommon species of plants or animals (S3 rank).

List name of species and ranking:

## 7. Education and Research in Natural Sciences

Function is present and likely to be significant: Any of the following characteristics indicate the wetland provides this function.

Owned by or leased to a public entity dedicated to education or research.



History of use for education or research.

Has one or more characteristics making it valuable for education or research.

| 8. | R | ecreational Value and Economic Benefits                                                                                       |
|----|---|-------------------------------------------------------------------------------------------------------------------------------|
|    |   | nction is present and likely to be significant: Any of the following characteristics indicate wetland provides this function. |
|    |   | Used for, or contributes to, recreational activities.                                                                         |
|    |   | Provides economic benefits.                                                                                                   |
|    |   | Provides important habitat for fish or wildlife which can be fished, hunted or trapped under applicable state law.            |
|    |   | Used for harvesting of wild foods.                                                                                            |
|    |   |                                                                                                                               |

Comments:

## 9. Open Space and Aesthetics

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

Can be readily observed by the public; and

Possesses special or unique aesthetic qualities; or

Has prominence as a distinct feature in the surrounding landscape;

Has been identified as important open space in a municipal, regional or state plan.

# 10. Erosion Control through Binding and Stabilizing the Soil

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

Erosive forces such as wave or current energy are present and any of the following are present as well:

Dense, persistent vegetation along a shoreline or stream bank that reduces an adjacent erosive force.

Good interspersion of persistent emergent vegetation and water along course of water flow.

Studies show that wetlands of similar size, vegetation type, and hydrology are important for erosion control.

What type of erosive forces are present?

Lake fetch and waves

High current velocities

Water level influenced by upstream impoundment

If any of the above boxes are checked, the wetland provides this function. Complete the following to determine if the wetland provides this function above or below a moderate level.

Check box if any of the following conditions apply that may indicate the wetland provides this function at a *lower* level.

The stream is artificially channelized and/or lacks vegetation that contributes to controlling the erosive force.

Check box if any of the following conditions apply that may indicate the wetland provides this function at a *higher* level.

The stream contains high sinuosity.

Has been identified through fluvial geomorphic assessment to be important in maintaining the natural condition of the stream or river corridor.

| VERMONT                                                     | WETLAND     | EVALUATION FORM                                                 |        |
|-------------------------------------------------------------|-------------|-----------------------------------------------------------------|--------|
| Project Name:                                               | Sub NH-00   | <sup>99</sup> Project #: 195601363                              |        |
| Date: 10/11/2017                                            | Investigato | or: SCS                                                         |        |
| SUMMARY OF FUNCTIONAL E<br>Each function gets a score of 0= |             | <u>N:</u><br>;; L = Low; P = Present; or H = High.              |        |
| 1. Water Storage for Flood Water and<br>Storm Runoff        | L           | 6. Rare, Threatened, and Endangered<br>Species Habitat          | 0      |
|                                                             |             |                                                                 |        |
| 2. Surface & Ground Water Protection                        | L           | 7. Education and Research in Natural Sciences                   | 0      |
|                                                             |             |                                                                 |        |
| 3. Fish Habitat                                             | 0           | 8. Recreational Value and Economic<br>Benefits                  | 0      |
|                                                             |             |                                                                 |        |
| 4. Wildlife Habitat                                         | 0           | 9. Open Space and Aesthetics                                    | 0      |
|                                                             |             |                                                                 |        |
| 5. Exemplary Wetland Natural<br>Community                   | 0           | 10. Erosion Control through Binding and<br>Stabilizing the Soil | d<br>O |

#### Note:

- When to use this form: This is a field form to help you compile data needed to evaluate the 10 possible functions and values of a wetland as described in the Vermont Wetland Rules. All information in this form is replicated in the applications for both wetland determinations and wetland permits.
- Both a desktop review and field examination should be employed to accurately determine surrounding land use, hydrology, hydroperiod, vegetation, position in the landscape, and physical attributes.
- **The entire wetland or wetland complex** in question must be evaluated to determine the level of function in all ten (10) categories for accurate classification. A wetland complex can be defined as a series of interconnected wetland types.
- The surrounding upland and outflow area of the wetland should be examined to determine land use, development, nearby natural resources, and hydrology. The surrounding land use, previous development, and cumulative impacts may play a role in the current function of the wetland. For best results please read all descriptions prior to scoring activity.
- *Evaluation*: The first portion in each section determines whether the wetland does or does not provide the function. If none of the conditions listed in the first section are met, proceed

to the next section. If any of these conditions are met, determine if the wetland provides this function at a higher or lower level based on the information listed in the subsequent sections.

- **Presumptions:** Please note that many wetlands are already presumed to be significant under the Vermont Wetland Rules. A wetland is presumed to be significant if:
  - o The wetland is mapped on the VSWI map
  - o The wetland is contiguous to a VSWI mapped wetland
  - The wetland meets the presumptions of significance under Section 4.6
  - o The wetland has a preliminary determination that it is Class II

# 1. Water Storage for Flood Water and Storm Runoff

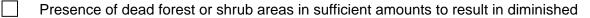
| Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function. |                                                                                                                                                                                                                                                        |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                             | Constricted outlet or no outlet and an unconstricted inlet.                                                                                                                                                                                            |  |
|                                                                                                                                                             | Physical space for floodwater expansion and dense, persistent, emergent vegetation<br>or dense woody vegetation that slows down flood waters or stormwater runoff during<br>peak flows and facilitates water removal by evaporation and transpiration. |  |
|                                                                                                                                                             | If a stream is present, its course is sinuous and there is sufficient woody vegetation to intercept surface flows in the portion of the wetland that floods.                                                                                           |  |
|                                                                                                                                                             | Physical evidence of seasonal flooding or ponding such as water stained leaves, water marks on trees, drift rows, debris deposits, or standing water.                                                                                                  |  |
|                                                                                                                                                             | Hydrologic or hydraulic study indicates wetland attenuates flooding.                                                                                                                                                                                   |  |
|                                                                                                                                                             | y of the above boxes are checked, the wetland provides this function. Complete the<br>wing to determine if the wetland provides this function above or below a moderate<br>:                                                                           |  |
|                                                                                                                                                             | k box if any of the following conditions apply that may indicate the wetland provides unction at a <i>lower</i> level.                                                                                                                                 |  |
|                                                                                                                                                             | Significant flood storage capacity upstream of the wetland, and the wetland in question provides this function at a negligible level in comparison to upstream storage (unless the upstream storage is temporary such as a beaver impoundment).        |  |
|                                                                                                                                                             | Wetland is contiguous to a major lake or pond that provides storage benefits independently of the wetland.                                                                                                                                             |  |
|                                                                                                                                                             | Wetland's storage capacity is created primarily by recent beaver dams or other temporary structures.                                                                                                                                                   |  |
|                                                                                                                                                             | Wetland is very small in size, not contiguous to a stream, and not part of a collection of small wetlands in the landscape that provide this function cumulatively.                                                                                    |  |
|                                                                                                                                                             | k box if any of the following conditions apply that may indicate the wetland provides unction at a <i>higher</i> level.                                                                                                                                |  |
|                                                                                                                                                             | History of downstream flood damage to public or private property.                                                                                                                                                                                      |  |
|                                                                                                                                                             | Any of the following conditions present downstream of the wetland, but upstream of a major lake or pond, could be impacted by a loss or reduction of the water storage function.                                                                       |  |
|                                                                                                                                                             | 1. Developed public or private property.                                                                                                                                                                                                               |  |
|                                                                                                                                                             | 2. Stream banks susceptible to scouring and erosion.                                                                                                                                                                                                   |  |
|                                                                                                                                                             | 3. Important habitat for aquatic life.                                                                                                                                                                                                                 |  |
|                                                                                                                                                             | The wetland is large in size and naturally vegetated.                                                                                                                                                                                                  |  |

| Any of the following conditions present upstream of the wetland may indicate a large |
|--------------------------------------------------------------------------------------|
| volume of runoff may reach the wetland.                                              |

- 1. A large amount of impervious surface in urbanized areas.
- 2. Relatively impervious soils.

heavily traveled road; and septic systems.

3. Steep slopes in the adjacent areas.


### 2. Surface and Ground Water Protection

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

| Constricted or no outlets.                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Low water velocity through dense, persistent vegetation.                                                                                                                                                                                                                                                                                            |
| Hydroperiod permanently flooded or saturated.                                                                                                                                                                                                                                                                                                       |
| Wetlands in depositional environments with persistent vegetation wider than 20 feet.                                                                                                                                                                                                                                                                |
| Wetlands with persistent vegetation comprising a defined delta, island, bar or peninsula.                                                                                                                                                                                                                                                           |
| Presence of seeps or springs.                                                                                                                                                                                                                                                                                                                       |
| Wetland contains a high amount of microtopography that helps slow and filter surface water.                                                                                                                                                                                                                                                         |
| Position in the landscape indicates the wetland is a headwaters area.                                                                                                                                                                                                                                                                               |
| Wetland is adjacent to surface waters.                                                                                                                                                                                                                                                                                                              |
| Wetland recharges a drinking water source.                                                                                                                                                                                                                                                                                                          |
| Water sampling indicates removal of pollutants or nutrients.                                                                                                                                                                                                                                                                                        |
| Water sampling indicates retention of sediments or organic matter.                                                                                                                                                                                                                                                                                  |
| Fine mineral soils and alkalinity not low.                                                                                                                                                                                                                                                                                                          |
| The wetland provides an obvious filter between surface water or ground water and<br>land uses that may contribute point or nonpoint sources of sediments, toxic<br>substances or nutrients to the wetland, such as: steep erodible slopes; row crops;<br>dumps; areas of pesticide, herbicide or fertilizer application; feed lots; parking lots or |

If any of the above boxes are checked, the wetland provides this function. Complete the following to determine if the wetland provides this function above or below a moderate level.

Check box if any of the following conditions apply that may indicate the wetland provides this function at a *lower* level.



| 9/1 | 4/20 | 10                                                                                                                                                                  |
|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |      | nutrient uptake.                                                                                                                                                    |
|     |      | Presence of ditches or channels that confine water and restrict contact of water with vegetation.                                                                   |
|     |      | Wetland is very small in size, not contiguous to a stream, and not part of a collection of small wetlands in the landscape that provide this function cumulatively. |
|     |      | Current use in the wetland results in disturbance that compromises this function.                                                                                   |
|     |      | k box if any of the following conditions apply that may indicate the wetland provides function at a <i>higher</i> level.                                            |
|     |      | The wetland is adjacent to a well head or source protection area, and provides ground water recharge.                                                               |
|     |      | The wetland provides flows to Class A surface waters.                                                                                                               |
|     |      | The wetland contributes to the protection or improvement of water quality of any impaired waters.                                                                   |
|     |      | The wetland is large in size and naturally vegetated.                                                                                                               |

### 3. Fish Habitat

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

Contains woody vegetation that overhangs the banks of a stream or river and provides any of the following: shading that controls summer water temperature; cover including refuges created by overhanging branches or undercut banks; source of terrestrial insects as fish food; or streambank stability.

Provides spawning, nursery, feeding or cover habitat for fish (documented or professionally judged). Common habitat includes deep marsh and shallow marsh associates with lakes and streams, and seasonally flooded wetlands associated with streams and rivers.

| Documented | or professionally | v judged s | spawning h | habitat for no | orthern pike. |
|------------|-------------------|------------|------------|----------------|---------------|
|            |                   |            |            |                |               |

Provides cold spring discharge that lowers the temperature of receiving waters and creates summer habitat for salmonoid species.

| The wetland is located along a tributary that does not support fish, but contributes to |
|-----------------------------------------------------------------------------------------|
| a larger body of water that does support fish. The tributary supports downstream fish   |
| by providing cooler water, and food sources.                                            |

# 4. Wildlife Habitat

| inction is present and likely to be significant: Any of the following physical and vegetative aracteristics indicate the wetland provides this function.                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Provides resting, feeding staging or roosting habitat to support waterfowl migration, and feeding habitat for wading birds. Good habitats for these species include open water wetlands.                                                                                                                                                                                             |
| Habitat to support one or more breeding pairs or broods of waterfowl including all species of ducks, geese, and swans. Good habitats for these species include open water habitats adjacent shallow marsh, deep marsh, shrub wetland, forested wetland, or naturally vegetated buffer zone.                                                                                          |
| Provides a nest site, a buffer for a nest site or feeding habitat for wading birds including but not limited to: great blue heron, black-crowned night heron, green-backed heron, cattle egret, or snowy egret. Good habitats for these species include open water or deep marsh adjacent to forested wetlands, or standing dead trees.                                              |
| Supports or has the habitat to support one or more breeding pairs of any migratory<br>bird that requires wetland habitat for breeding, nesting, rearing of young, feeding,<br>staging roosting, or migration, including: Virginia rail, common snipe, marsh wren,<br>American bittern, northern water thrush, northern harrier, spruce grouse, Cerulean<br>warbler, and common loon. |
| Supports winter habitat for white-tailed deer. Good habitats for these species include softwood swamps. Evidence of use includes deer browsing, bark stripping, worn trails, or pellet piles.                                                                                                                                                                                        |
| Provides important feeding habitat for black bear, bobcat, or moose based on an assessment of use. Good habitat for these types of species includes wetlands located in a forested mosaic.                                                                                                                                                                                           |
| Has the habitat to support muskrat, otter or mink. Good habitats for these species include deep marshes, wetlands adjacent to bodies of water including lakes, ponds, rivers and streams.                                                                                                                                                                                            |
| Supports an active beaver dam, one or more lodges, or evidence of use in two or more consecutive years by an adult beaver population.                                                                                                                                                                                                                                                |
| Provides the following habitats that support the reproduction of Uncommon Vermont<br>amphibian species including:                                                                                                                                                                                                                                                                    |
| <ol> <li>Wood Frog, Jefferson Salamander, Blue-spotted Salamander, or Spotted<br/>Salamander. Breeding habitat for these species includes vernal pools and<br/>small ponds.</li> </ol>                                                                                                                                                                                               |
| 2. Northern Dusky Salamander and the Spring Salamander. Habitat for these species includes headwater seeps, springs, and streams.                                                                                                                                                                                                                                                    |
| 3. The Four-toed salamander; Fowler's Toad; Western or Boreal Chorus frog, or<br>other amphibians found in Vermont of similar significance.                                                                                                                                                                                                                                          |

| 9/1 | 4 <u>/2</u> 0 |                   |                                                                                                                                                                                                                                                                                                                    |
|-----|---------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |               | specie<br>and ot  | rts or has the habitat to support significant populations of Vermont amphibian<br>s including, but not limited to Pickerel Frog, Northern Leopard Frog, Mink Frog,<br>hers found in Vermont of similar significance. Good habitat for these types of<br>s includes large marsh systems with open water components. |
|     |               | specie<br>Turtle, | rts or has the habitat to support populations of uncommon Vermont reptile<br>s including: Wood Turtle, Northern Map Turtle, Eastern Musk Turtle, Spotted<br>Spiny Softshell, Eastern Ribbonsnake, Northern Watersnake, and others found<br>nont of similar significance.                                           |
|     |               | specie            | rts or has the habitat to support significant populations of Vermont reptile<br>s, including Smooth Greensnake, DeKay's Brownsnake, or other more<br>on wetland-associated species.                                                                                                                                |
|     |               | Meets             | four or more of the following conditions indicative of wildlife habitat diversity:                                                                                                                                                                                                                                 |
|     |               | <b>□</b> 1.       | Three or more wetland vegetation classes (greater than 1/2 acre) present including but not limited to: open water contiguous to, but not necessarily part of, the wetland, deep marsh, shallow marsh, shrub swamp, forested swamp, fen, or bog;                                                                    |
|     |               | 2.                | The dominant vegetation class is one of the following types: deep marsh, shallow marsh, shrub swamp or, forested swamp;                                                                                                                                                                                            |
|     |               | 3.                | Located adjacent to a lake, pond, river or stream;                                                                                                                                                                                                                                                                 |
|     |               | <b>4</b> .        | Fifty percent or more of surrounding habitat type is one or more of the following: forest, agricultural land, old field or open land;                                                                                                                                                                              |
|     |               | 5.                | Emergent or woody vegetation occupies 26 to 75 percent of wetland, the rest is open water;                                                                                                                                                                                                                         |
|     |               | 6.                | One of the following:                                                                                                                                                                                                                                                                                              |
|     |               |                   | i. hydrologically connected to other wetlands of different dominant classes or open water within 1 mile;                                                                                                                                                                                                           |
|     |               |                   | ii. hydrologically connected to other wetlands of same dominant class within 1/2 mile;                                                                                                                                                                                                                             |
|     |               |                   | iii. within 1/4 mile of other wetlands of different dominant classes or open water, but not hydrologically connected;                                                                                                                                                                                              |
|     |               |                   | d or wetland complex is owned in whole or in part by state or federal ment and managed for wildlife and habitat conservation; and                                                                                                                                                                                  |
|     |               | Contair           | is evidence that it is used by wetland dependent wildlife species.                                                                                                                                                                                                                                                 |
|     |               | wing to           | above boxes are checked, the wetland provides this function. Complete the determine if the wetland provides this function above or below a moderate                                                                                                                                                                |
|     |               |                   | any of the following conditions apply that may indicate the wetland provides at a <i>lower</i> level.                                                                                                                                                                                                              |
|     |               | The we            | etland is small in size for its type and does not represent fugitive habitat in                                                                                                                                                                                                                                    |

| 9/1 | 4/20 | 10                                                                                                                                                                                 |
|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |      | developed areas (vernal pools and seeps are generally small in size, so this does not apply).                                                                                      |
|     |      | The surrounding land use is densely developed enough to limit use by wildlife species (with the exception of wetlands with open water habitat). Can be negated by evidence of use. |
|     |      | The current use in the wetland results in frequent cutting, mowing or other disturbance.                                                                                           |
|     |      | The wetland hydrology and character is at a drier end of the scale and does not support wetland dependent species.                                                                 |
|     |      | ck box if any of the following conditions apply that may indicate the wetland provides function at a <i>higher</i> level.                                                          |
|     |      | The wetland complex is large in size and high in quality.                                                                                                                          |
|     |      | The habitat has the potential to support several species based on the assessment above.                                                                                            |
|     |      | Wetland is associated with an important wildlife corridor.                                                                                                                         |
|     |      | The wetland has been identified by ANR-F&W as important habitat.                                                                                                                   |
|     |      |                                                                                                                                                                                    |

## 5. Exemplary Wetland Natural Community

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

| Wetlands that are identified as high quality examples of Vermont's natural community types recognized by the Natural Heritage Information Project of the Vermont Fish and |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                           |
| Wildlife Department, including rare types such as dwarf shrub bogs, rich fens, alpine                                                                                     |
| peatlands, red maple-black gum swamps and the more common types including deep                                                                                            |
| bulrush marshes, cattail marshes, northern white cedar swamps, spruce-fir-tamarack                                                                                        |
| swamps, and red maple-black ash seepage swamps are automatically significant for                                                                                          |
| this function.                                                                                                                                                            |
|                                                                                                                                                                           |

The wetland is also likely to be significant if any of the following conditions are met:

| Is an example of a wetland natural community type that has been identified and |
|--------------------------------------------------------------------------------|
| mapped by, or meets the ranking and mapping standards of, the Natural Heritage |
| Information Project of the Vermont Fish and Wildlife Department.               |

Contains ecological features that contribute to Vermont's natural heritage, including, but not limited to:

Deep peat accumulation reflecting a long history of wetland formation;

| $\square$ | Forested wetlands displaying very | old trees and | other old growth | characteristics; |
|-----------|-----------------------------------|---------------|------------------|------------------|
|           | i olooloo wolanao aloplaying vory |               | i oli ola giomin | onalaotonotioo,  |

A wetland natural community that is at the edge of the normal range for that type;

A wetland mosaic containing examples of several to many wetland community types; or

A large wetland complex with examples of several wetland community types.

## 6. Rare, Threatened, and Endangered Species Habitat

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

Wetlands that contain one or more species on the federal or state threatened or endangered lists, as well as species that are rare in Vermont, are automatically significant for this function.

The wetland is also likely to be significant if any of the following apply:

] There is creditable documentation that the wetland provides important habitat for any species on the federal or state threatened or endangered species lists;

There is creditable documentation that threatened or endangered species have been present in past 10 years;

] There is creditable documentation that the wetland provides important habitat for any species listed as rare in Vermont (S1 or S2 ranks), state historic (SH rank), or rare to uncommon globally (G1, G2, or G3 ranks) by the Natural Heritage Information Project of the Vermont Fish and Wildlife Department;

There is creditable documentation that the wetland provides habitat for multiple uncommon species of plants or animals (S3 rank).

List name of species and ranking:

## 7. Education and Research in Natural Sciences

Function is present and likely to be significant: Any of the following characteristics indicate the wetland provides this function.

Owned by or leased to a public entity dedicated to education or research.



History of use for education or research.

Has one or more characteristics making it valuable for education or research.

| 8. | R | ecreational Value and Economic Benefits                                                                                       |
|----|---|-------------------------------------------------------------------------------------------------------------------------------|
|    |   | nction is present and likely to be significant: Any of the following characteristics indicate wetland provides this function. |
|    |   | Used for, or contributes to, recreational activities.                                                                         |
|    |   | Provides economic benefits.                                                                                                   |
|    |   | Provides important habitat for fish or wildlife which can be fished, hunted or trapped under applicable state law.            |
|    |   | Used for harvesting of wild foods.                                                                                            |
|    |   |                                                                                                                               |

Comments:

## 9. Open Space and Aesthetics

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

Can be readily observed by the public; and

Possesses special or unique aesthetic qualities; or

Has prominence as a distinct feature in the surrounding landscape;

Has been identified as important open space in a municipal, regional or state plan.

# 10. Erosion Control through Binding and Stabilizing the Soil

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

Erosive forces such as wave or current energy are present and any of the following are present as well:

Dense, persistent vegetation along a shoreline or stream bank that reduces an adjacent erosive force.

Good interspersion of persistent emergent vegetation and water along course of water flow.

Studies show that wetlands of similar size, vegetation type, and hydrology are important for erosion control.

What type of erosive forces are present?

Lake fetch and waves

High current velocities

Water level influenced by upstream impoundment

If any of the above boxes are checked, the wetland provides this function. Complete the following to determine if the wetland provides this function above or below a moderate level.

Check box if any of the following conditions apply that may indicate the wetland provides this function at a *lower* level.

The stream is artificially channelized and/or lacks vegetation that contributes to controlling the erosive force.

Check box if any of the following conditions apply that may indicate the wetland provides this function at a *higher* level.

The stream contains high sinuosity.

Has been identified through fluvial geomorphic assessment to be important in maintaining the natural condition of the stream or river corridor.

| VERMONT WETLAND EVALUATION FORM                             |             |                                                              |        |
|-------------------------------------------------------------|-------------|--------------------------------------------------------------|--------|
| Project Name:                                               | Sub NH-01   | <sup>0</sup> Project #: 195601363                            |        |
| Date: 10/11/2017                                            | Investigato | n: AS                                                        |        |
| SUMMARY OF FUNCTIONAL E<br>Each function gets a score of 0= |             | <u>N:</u><br>; L = Low; P = Present; or H = High.            |        |
| 1. Water Storage for Flood Water and<br>Storm Runoff        | 0           | 6. Rare, Threatened, and Endangered<br>Species Habitat       | 0      |
|                                                             |             |                                                              |        |
| 2. Surface & Ground Water Protection                        | L           | 7. Education and Research in Natural<br>Sciences             | 0      |
|                                                             |             |                                                              |        |
| 3. Fish Habitat                                             | 0           | 8. Recreational Value and Economic<br>Benefits               | 0      |
|                                                             |             |                                                              |        |
| 4. Wildlife Habitat                                         | 0           | 9. Open Space and Aesthetics                                 | 0      |
|                                                             |             |                                                              |        |
| 5. Exemplary Wetland Natural<br>Community                   | 0           | 10. Erosion Control through Binding and Stabilizing the Soil | d<br>O |

#### Note:

- When to use this form: This is a field form to help you compile data needed to evaluate the 10 possible functions and values of a wetland as described in the Vermont Wetland Rules. All information in this form is replicated in the applications for both wetland determinations and wetland permits.
- Both a desktop review and field examination should be employed to accurately determine surrounding land use, hydrology, hydroperiod, vegetation, position in the landscape, and physical attributes.
- **The entire wetland or wetland complex** in question must be evaluated to determine the level of function in all ten (10) categories for accurate classification. A wetland complex can be defined as a series of interconnected wetland types.
- The surrounding upland and outflow area of the wetland should be examined to determine land use, development, nearby natural resources, and hydrology. The surrounding land use, previous development, and cumulative impacts may play a role in the current function of the wetland. For best results please read all descriptions prior to scoring activity.
- *Evaluation*: The first portion in each section determines whether the wetland does or does not provide the function. If none of the conditions listed in the first section are met, proceed

to the next section. If any of these conditions are met, determine if the wetland provides this function at a higher or lower level based on the information listed in the subsequent sections.

- **Presumptions:** Please note that many wetlands are already presumed to be significant under the Vermont Wetland Rules. A wetland is presumed to be significant if:
  - o The wetland is mapped on the VSWI map
  - o The wetland is contiguous to a VSWI mapped wetland
  - The wetland meets the presumptions of significance under Section 4.6
  - o The wetland has a preliminary determination that it is Class II

# 1. Water Storage for Flood Water and Storm Runoff

|  | ction is present and likely to be significant: Any of the following physical and vegetative acteristics indicate the wetland provides this function.                                                                                             |  |  |  |
|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|  | Constricted outlet or no outlet and an unconstricted inlet.                                                                                                                                                                                      |  |  |  |
|  | Physical space for floodwater expansion and dense, persistent, emergent vegetation or dense woody vegetation that slows down flood waters or stormwater runoff during peak flows and facilitates water removal by evaporation and transpiration. |  |  |  |
|  | If a stream is present, its course is sinuous and there is sufficient woody vegetation to intercept surface flows in the portion of the wetland that floods.                                                                                     |  |  |  |
|  | Physical evidence of seasonal flooding or ponding such as water stained leaves, water marks on trees, drift rows, debris deposits, or standing water.                                                                                            |  |  |  |
|  | Hydrologic or hydraulic study indicates wetland attenuates flooding.                                                                                                                                                                             |  |  |  |
|  | y of the above boxes are checked, the wetland provides this function. Complete the wing to determine if the wetland provides this function above or below a moderate I:                                                                          |  |  |  |
|  | ck box if any of the following conditions apply that may indicate the wetland provides function at a <i>lower</i> level.                                                                                                                         |  |  |  |
|  | Significant flood storage capacity upstream of the wetland, and the wetland in question provides this function at a negligible level in comparison to upstream storage (unless the upstream storage is temporary such as a beaver impoundment).  |  |  |  |
|  | Wetland is contiguous to a major lake or pond that provides storage benefits independently of the wetland.                                                                                                                                       |  |  |  |
|  | Wetland's storage capacity is created primarily by recent beaver dams or other temporary structures.                                                                                                                                             |  |  |  |
|  | Wetland is very small in size, not contiguous to a stream, and not part of a collection of small wetlands in the landscape that provide this function cumulatively.                                                                              |  |  |  |
|  | ck box if any of the following conditions apply that may indicate the wetland provides function at a <i>higher</i> level.                                                                                                                        |  |  |  |
|  | History of downstream flood damage to public or private property.                                                                                                                                                                                |  |  |  |
|  | Any of the following conditions present downstream of the wetland, but upstream of a major lake or pond, could be impacted by a loss or reduction of the water storage function.                                                                 |  |  |  |
|  | 1. Developed public or private property.                                                                                                                                                                                                         |  |  |  |
|  | 2. Stream banks susceptible to scouring and erosion.                                                                                                                                                                                             |  |  |  |
|  | 3. Important habitat for aquatic life.                                                                                                                                                                                                           |  |  |  |
|  | The wetland is large in size and naturally vegetated.                                                                                                                                                                                            |  |  |  |

| Any of the following conditions present upstream of the wetland may indicate a large |
|--------------------------------------------------------------------------------------|
| volume of runoff may reach the wetland.                                              |

- 1. A large amount of impervious surface in urbanized areas.
  - 2. Relatively impervious soils.
  - 3. Steep slopes in the adjacent areas.

### 2. Surface and Ground Water Protection

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

|  | Constricted or no outlets.                                                                                                                                                                                                                                                                                                                                                                        |
|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | Low water velocity through dense, persistent vegetation.                                                                                                                                                                                                                                                                                                                                          |
|  | Hydroperiod permanently flooded or saturated.                                                                                                                                                                                                                                                                                                                                                     |
|  | Wetlands in depositional environments with persistent vegetation wider than 20 feet.                                                                                                                                                                                                                                                                                                              |
|  | Wetlands with persistent vegetation comprising a defined delta, island, bar or peninsula.                                                                                                                                                                                                                                                                                                         |
|  | Presence of seeps or springs.                                                                                                                                                                                                                                                                                                                                                                     |
|  | Wetland contains a high amount of microtopography that helps slow and filter surface water.                                                                                                                                                                                                                                                                                                       |
|  | Position in the landscape indicates the wetland is a headwaters area.                                                                                                                                                                                                                                                                                                                             |
|  | Wetland is adjacent to surface waters.                                                                                                                                                                                                                                                                                                                                                            |
|  | Wetland recharges a drinking water source.                                                                                                                                                                                                                                                                                                                                                        |
|  | Water sampling indicates removal of pollutants or nutrients.                                                                                                                                                                                                                                                                                                                                      |
|  | Water sampling indicates retention of sediments or organic matter.                                                                                                                                                                                                                                                                                                                                |
|  | Fine mineral soils and alkalinity not low.                                                                                                                                                                                                                                                                                                                                                        |
|  | The wetland provides an obvious filter between surface water or ground water and<br>land uses that may contribute point or nonpoint sources of sediments, toxic<br>substances or nutrients to the wetland, such as: steep erodible slopes; row crops;<br>dumps; areas of pesticide, herbicide or fertilizer application; feed lots; parking lots or<br>heavily traveled road; and septic systems. |
|  |                                                                                                                                                                                                                                                                                                                                                                                                   |

If any of the above boxes are checked, the wetland provides this function. Complete the following to determine if the wetland provides this function above or below a moderate level.

Check box if any of the following conditions apply that may indicate the wetland provides this function at a *lower* level.

Presence of dead forest or shrub areas in sufficient amounts to result in diminished

| 9/14/2010 |  |                                                                                                                                                                     |  |  |
|-----------|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|           |  | nutrient uptake.                                                                                                                                                    |  |  |
|           |  | Presence of ditches or channels that confine water and restrict contact of water with vegetation.                                                                   |  |  |
|           |  | Wetland is very small in size, not contiguous to a stream, and not part of a collection of small wetlands in the landscape that provide this function cumulatively. |  |  |
|           |  | Current use in the wetland results in disturbance that compromises this function.                                                                                   |  |  |
|           |  | ck box if any of the following conditions apply that may indicate the wetland provides function at a <i>higher</i> level.                                           |  |  |
|           |  | The wetland is adjacent to a well head or source protection area, and provides ground water recharge.                                                               |  |  |
|           |  | The wetland provides flows to Class A surface waters.                                                                                                               |  |  |
|           |  | The wetland contributes to the protection or improvement of water quality of any impaired waters.                                                                   |  |  |
|           |  | The wetland is large in size and naturally vegetated.                                                                                                               |  |  |

#### 3. Fish Habitat

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

Contains woody vegetation that overhangs the banks of a stream or river and provides any of the following: shading that controls summer water temperature; cover including refuges created by overhanging branches or undercut banks; source of terrestrial insects as fish food; or streambank stability.

Provides spawning, nursery, feeding or cover habitat for fish (documented or professionally judged). Common habitat includes deep marsh and shallow marsh associates with lakes and streams, and seasonally flooded wetlands associated with streams and rivers.

Provides cold spring discharge that lowers the temperature of receiving waters and creates summer habitat for salmonoid species.

| The wetland is located along a tributary that does not support fish, but contributes to |
|-----------------------------------------------------------------------------------------|
| a larger body of water that does support fish. The tributary supports downstream fish   |
| by providing cooler water, and food sources.                                            |

# 4. Wildlife Habitat

| inction is present and likely to be significant: Any of the following physical and vegetative aracteristics indicate the wetland provides this function.                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Provides resting, feeding staging or roosting habitat to support waterfowl migration, and feeding habitat for wading birds. Good habitats for these species include open water wetlands.                                                                                                                                                                                             |
| Habitat to support one or more breeding pairs or broods of waterfowl including all species of ducks, geese, and swans. Good habitats for these species include open water habitats adjacent shallow marsh, deep marsh, shrub wetland, forested wetland, or naturally vegetated buffer zone.                                                                                          |
| Provides a nest site, a buffer for a nest site or feeding habitat for wading birds including but not limited to: great blue heron, black-crowned night heron, green-backed heron, cattle egret, or snowy egret. Good habitats for these species include open water or deep marsh adjacent to forested wetlands, or standing dead trees.                                              |
| Supports or has the habitat to support one or more breeding pairs of any migratory<br>bird that requires wetland habitat for breeding, nesting, rearing of young, feeding,<br>staging roosting, or migration, including: Virginia rail, common snipe, marsh wren,<br>American bittern, northern water thrush, northern harrier, spruce grouse, Cerulean<br>warbler, and common loon. |
| Supports winter habitat for white-tailed deer. Good habitats for these species include softwood swamps. Evidence of use includes deer browsing, bark stripping, worn trails, or pellet piles.                                                                                                                                                                                        |
| Provides important feeding habitat for black bear, bobcat, or moose based on an assessment of use. Good habitat for these types of species includes wetlands located in a forested mosaic.                                                                                                                                                                                           |
| Has the habitat to support muskrat, otter or mink. Good habitats for these species include deep marshes, wetlands adjacent to bodies of water including lakes, ponds, rivers and streams.                                                                                                                                                                                            |
| Supports an active beaver dam, one or more lodges, or evidence of use in two or more consecutive years by an adult beaver population.                                                                                                                                                                                                                                                |
| Provides the following habitats that support the reproduction of Uncommon Vermont<br>amphibian species including:                                                                                                                                                                                                                                                                    |
| <ol> <li>Wood Frog, Jefferson Salamander, Blue-spotted Salamander, or Spotted<br/>Salamander. Breeding habitat for these species includes vernal pools and<br/>small ponds.</li> </ol>                                                                                                                                                                                               |
| 2. Northern Dusky Salamander and the Spring Salamander. Habitat for these species includes headwater seeps, springs, and streams.                                                                                                                                                                                                                                                    |
| 3. The Four-toed salamander; Fowler's Toad; Western or Boreal Chorus frog, or<br>other amphibians found in Vermont of similar significance.                                                                                                                                                                                                                                          |

| 9/1 | 4 <u>/2</u> 0 |                   |                                                                                                                                                                                                                                                                                                                    |
|-----|---------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |               | specie<br>and ot  | rts or has the habitat to support significant populations of Vermont amphibian<br>s including, but not limited to Pickerel Frog, Northern Leopard Frog, Mink Frog,<br>hers found in Vermont of similar significance. Good habitat for these types of<br>s includes large marsh systems with open water components. |
|     |               | specie<br>Turtle, | rts or has the habitat to support populations of uncommon Vermont reptile<br>s including: Wood Turtle, Northern Map Turtle, Eastern Musk Turtle, Spotted<br>Spiny Softshell, Eastern Ribbonsnake, Northern Watersnake, and others found<br>nont of similar significance.                                           |
|     |               | specie            | rts or has the habitat to support significant populations of Vermont reptile<br>s, including Smooth Greensnake, DeKay's Brownsnake, or other more<br>on wetland-associated species.                                                                                                                                |
|     |               | Meets             | four or more of the following conditions indicative of wildlife habitat diversity:                                                                                                                                                                                                                                 |
|     |               | <b>□</b> 1.       | Three or more wetland vegetation classes (greater than 1/2 acre) present including but not limited to: open water contiguous to, but not necessarily part of, the wetland, deep marsh, shallow marsh, shrub swamp, forested swamp, fen, or bog;                                                                    |
|     |               | 2.                | The dominant vegetation class is one of the following types: deep marsh, shallow marsh, shrub swamp or, forested swamp;                                                                                                                                                                                            |
|     |               | 3.                | Located adjacent to a lake, pond, river or stream;                                                                                                                                                                                                                                                                 |
|     |               | <b>4</b> .        | Fifty percent or more of surrounding habitat type is one or more of the following: forest, agricultural land, old field or open land;                                                                                                                                                                              |
|     |               | 5.                | Emergent or woody vegetation occupies 26 to 75 percent of wetland, the rest is open water;                                                                                                                                                                                                                         |
|     |               | 6.                | One of the following:                                                                                                                                                                                                                                                                                              |
|     |               |                   | i. hydrologically connected to other wetlands of different dominant classes or open water within 1 mile;                                                                                                                                                                                                           |
|     |               |                   | ii. hydrologically connected to other wetlands of same dominant class within 1/2 mile;                                                                                                                                                                                                                             |
|     |               |                   | iii. within 1/4 mile of other wetlands of different dominant classes or open water, but not hydrologically connected;                                                                                                                                                                                              |
|     |               |                   | d or wetland complex is owned in whole or in part by state or federal ment and managed for wildlife and habitat conservation; and                                                                                                                                                                                  |
|     |               | Contair           | is evidence that it is used by wetland dependent wildlife species.                                                                                                                                                                                                                                                 |
|     |               | wing to           | above boxes are checked, the wetland provides this function. Complete the determine if the wetland provides this function above or below a moderate                                                                                                                                                                |
|     |               |                   | any of the following conditions apply that may indicate the wetland provides at a <i>lower</i> level.                                                                                                                                                                                                              |
|     |               | The we            | etland is small in size for its type and does not represent fugitive habitat in                                                                                                                                                                                                                                    |

| 9/1 | 4/20 | 10                                                                                                                                                                                 |
|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |      | developed areas (vernal pools and seeps are generally small in size, so this does not apply).                                                                                      |
|     |      | The surrounding land use is densely developed enough to limit use by wildlife species (with the exception of wetlands with open water habitat). Can be negated by evidence of use. |
|     |      | The current use in the wetland results in frequent cutting, mowing or other disturbance.                                                                                           |
|     |      | The wetland hydrology and character is at a drier end of the scale and does not support wetland dependent species.                                                                 |
|     |      | ck box if any of the following conditions apply that may indicate the wetland provides function at a <i>higher</i> level.                                                          |
|     |      | The wetland complex is large in size and high in quality.                                                                                                                          |
|     |      | The habitat has the potential to support several species based on the assessment above.                                                                                            |
|     |      | Wetland is associated with an important wildlife corridor.                                                                                                                         |
|     |      | The wetland has been identified by ANR-F&W as important habitat.                                                                                                                   |
|     |      |                                                                                                                                                                                    |

## 5. Exemplary Wetland Natural Community

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

| Wetlands that are identified as high quality examples of Vermont's natural community types recognized by the Natural Heritage Information Project of the Vermont Fish and |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                           |
| Wildlife Department, including rare types such as dwarf shrub bogs, rich fens, alpine                                                                                     |
| peatlands, red maple-black gum swamps and the more common types including deep                                                                                            |
| bulrush marshes, cattail marshes, northern white cedar swamps, spruce-fir-tamarack                                                                                        |
| swamps, and red maple-black ash seepage swamps are automatically significant for                                                                                          |
| this function.                                                                                                                                                            |

The wetland is also likely to be significant if any of the following conditions are met:

| Is an example of a wetland natural community type that has been identified and |
|--------------------------------------------------------------------------------|
| mapped by, or meets the ranking and mapping standards of, the Natural Heritage |
| Information Project of the Vermont Fish and Wildlife Department.               |

Contains ecological features that contribute to Vermont's natural heritage, including, but not limited to:

Deep peat accumulation reflecting a long history of wetland formation;

| $\square$ | Forested wetlands dis | playing very old tre | es and other old grow | h characteristics; |
|-----------|-----------------------|----------------------|-----------------------|--------------------|
|           |                       | p.a.,                | 00 0 0 0 g. 0         |                    |

A wetland natural community that is at the edge of the normal range for that type;

A wetland mosaic containing examples of several to many wetland community types; or

A large wetland complex with examples of several wetland community types.

## 6. Rare, Threatened, and Endangered Species Habitat

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

Wetlands that contain one or more species on the federal or state threatened or endangered lists, as well as species that are rare in Vermont, are automatically significant for this function.

The wetland is also likely to be significant if any of the following apply:

] There is creditable documentation that the wetland provides important habitat for any species on the federal or state threatened or endangered species lists;

There is creditable documentation that threatened or endangered species have been present in past 10 years;

] There is creditable documentation that the wetland provides important habitat for any species listed as rare in Vermont (S1 or S2 ranks), state historic (SH rank), or rare to uncommon globally (G1, G2, or G3 ranks) by the Natural Heritage Information Project of the Vermont Fish and Wildlife Department;

There is creditable documentation that the wetland provides habitat for multiple uncommon species of plants or animals (S3 rank).

List name of species and ranking:

## 7. Education and Research in Natural Sciences

Function is present and likely to be significant: Any of the following characteristics indicate the wetland provides this function.

Owned by or leased to a public entity dedicated to education or research.



History of use for education or research.

Has one or more characteristics making it valuable for education or research.

| 8. | R | ecreational Value and Economic Benefits                                                                                       |
|----|---|-------------------------------------------------------------------------------------------------------------------------------|
|    |   | nction is present and likely to be significant: Any of the following characteristics indicate wetland provides this function. |
|    |   | Used for, or contributes to, recreational activities.                                                                         |
|    |   | Provides economic benefits.                                                                                                   |
|    |   | Provides important habitat for fish or wildlife which can be fished, hunted or trapped under applicable state law.            |
|    |   | Used for harvesting of wild foods.                                                                                            |
|    |   |                                                                                                                               |

Comments:

## 9. Open Space and Aesthetics

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

Can be readily observed by the public; and

Possesses special or unique aesthetic qualities; or

Has prominence as a distinct feature in the surrounding landscape;

Has been identified as important open space in a municipal, regional or state plan.

# 10. Erosion Control through Binding and Stabilizing the Soil

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

Erosive forces such as wave or current energy are present and any of the following are present as well:

Dense, persistent vegetation along a shoreline or stream bank that reduces an adjacent erosive force.

Good interspersion of persistent emergent vegetation and water along course of water flow.

Studies show that wetlands of similar size, vegetation type, and hydrology are important for erosion control.

What type of erosive forces are present?

Lake fetch and waves

High current velocities

Water level influenced by upstream impoundment

If any of the above boxes are checked, the wetland provides this function. Complete the following to determine if the wetland provides this function above or below a moderate level.

Check box if any of the following conditions apply that may indicate the wetland provides this function at a *lower* level.

The stream is artificially channelized and/or lacks vegetation that contributes to controlling the erosive force.

Check box if any of the following conditions apply that may indicate the wetland provides this function at a *higher* level.

The stream contains high sinuosity.

Has been identified through fluvial geomorphic assessment to be important in maintaining the natural condition of the stream or river corridor.

| VERMONT                                                     | WETLAND     | EVALUATION FORM                                                 |        |
|-------------------------------------------------------------|-------------|-----------------------------------------------------------------|--------|
| Project Name: Velco New Haven                               | BCC NH-2    | <sup>01</sup> Project #: <b>195601363</b>                       |        |
| Date: 11/1/2017                                             | Investigato | pr: EDB                                                         |        |
| SUMMARY OF FUNCTIONAL E<br>Each function gets a score of 0= |             | <u>N:</u><br>t; L = Low; P = Present; or H = High.              |        |
| 1. Water Storage for Flood Water and<br>Storm Runoff        | L           | 6. Rare, Threatened, and Endangered<br>Species Habitat          | 0      |
|                                                             |             |                                                                 |        |
| 2. Surface & Ground Water Protection                        | L           | 7. Education and Research in Natural<br>Sciences                | 0      |
|                                                             |             |                                                                 |        |
| 3. Fish Habitat                                             | 0           | 8. Recreational Value and Economic<br>Benefits                  | 0      |
|                                                             |             |                                                                 |        |
| 4. Wildlife Habitat                                         | 0           | 9. Open Space and Aesthetics                                    | 0      |
|                                                             |             |                                                                 |        |
| 5. Exemplary Wetland Natural<br>Community                   | 0           | 10. Erosion Control through Binding and<br>Stabilizing the Soil | d<br>0 |

#### Note:

- When to use this form: This is a field form to help you compile data needed to evaluate the 10 possible functions and values of a wetland as described in the Vermont Wetland Rules. All information in this form is replicated in the applications for both wetland determinations and wetland permits.
- Both a desktop review and field examination should be employed to accurately determine surrounding land use, hydrology, hydroperiod, vegetation, position in the landscape, and physical attributes.
- **The entire wetland or wetland complex** in question must be evaluated to determine the level of function in all ten (10) categories for accurate classification. A wetland complex can be defined as a series of interconnected wetland types.
- **The surrounding upland and outflow area** of the wetland should be examined to determine land use, development, nearby natural resources, and hydrology. The surrounding land use, previous development, and cumulative impacts may play a role in the current function of the wetland. For best results please read all descriptions prior to scoring activity.
- **Evaluation**: The first portion in each section determines whether the wetland does or does not provide the function. If none of the conditions listed in the first section are met, proceed

to the next section. If any of these conditions are met, determine if the wetland provides this function at a higher or lower level based on the information listed in the subsequent sections.

- **Presumptions:** Please note that many wetlands are already presumed to be significant under the Vermont Wetland Rules. A wetland is presumed to be significant if:
  - o The wetland is mapped on the VSWI map
  - o The wetland is contiguous to a VSWI mapped wetland
  - The wetland meets the presumptions of significance under Section 4.6
  - o The wetland has a preliminary determination that it is Class II

# 1. Water Storage for Flood Water and Storm Runoff

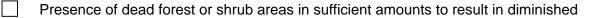
| Function is present and likely to be significant: Any of the following physical and vegeta characteristics indicate the wetland provides this function. |                                                                                                                                                                                                                                                        |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                         | Constricted outlet or no outlet and an unconstricted inlet.                                                                                                                                                                                            |  |
|                                                                                                                                                         | Physical space for floodwater expansion and dense, persistent, emergent vegetation<br>or dense woody vegetation that slows down flood waters or stormwater runoff during<br>peak flows and facilitates water removal by evaporation and transpiration. |  |
|                                                                                                                                                         | If a stream is present, its course is sinuous and there is sufficient woody vegetation to intercept surface flows in the portion of the wetland that floods.                                                                                           |  |
|                                                                                                                                                         | Physical evidence of seasonal flooding or ponding such as water stained leaves, water marks on trees, drift rows, debris deposits, or standing water.                                                                                                  |  |
|                                                                                                                                                         | Hydrologic or hydraulic study indicates wetland attenuates flooding.                                                                                                                                                                                   |  |
|                                                                                                                                                         | y of the above boxes are checked, the wetland provides this function. Complete the<br>wing to determine if the wetland provides this function above or below a moderate<br>:                                                                           |  |
|                                                                                                                                                         | k box if any of the following conditions apply that may indicate the wetland provides unction at a <i>lower</i> level.                                                                                                                                 |  |
|                                                                                                                                                         | Significant flood storage capacity upstream of the wetland, and the wetland in question provides this function at a negligible level in comparison to upstream storage (unless the upstream storage is temporary such as a beaver impoundment).        |  |
|                                                                                                                                                         | Wetland is contiguous to a major lake or pond that provides storage benefits independently of the wetland.                                                                                                                                             |  |
|                                                                                                                                                         | Wetland's storage capacity is created primarily by recent beaver dams or other temporary structures.                                                                                                                                                   |  |
|                                                                                                                                                         | Wetland is very small in size, not contiguous to a stream, and not part of a collection of small wetlands in the landscape that provide this function cumulatively.                                                                                    |  |
|                                                                                                                                                         | k box if any of the following conditions apply that may indicate the wetland provides unction at a <i>higher</i> level.                                                                                                                                |  |
|                                                                                                                                                         | History of downstream flood damage to public or private property.                                                                                                                                                                                      |  |
|                                                                                                                                                         | Any of the following conditions present downstream of the wetland, but upstream of a major lake or pond, could be impacted by a loss or reduction of the water storage function.                                                                       |  |
|                                                                                                                                                         | 1. Developed public or private property.                                                                                                                                                                                                               |  |
|                                                                                                                                                         | 2. Stream banks susceptible to scouring and erosion.                                                                                                                                                                                                   |  |
|                                                                                                                                                         | 3. Important habitat for aquatic life.                                                                                                                                                                                                                 |  |
|                                                                                                                                                         | The wetland is large in size and naturally vegetated.                                                                                                                                                                                                  |  |

| Any of the following conditions present upstream of the wetland may indicate a large |
|--------------------------------------------------------------------------------------|
| volume of runoff may reach the wetland.                                              |

- 1. A large amount of impervious surface in urbanized areas.
- 2. Relatively impervious soils.

heavily traveled road; and septic systems.

3. Steep slopes in the adjacent areas.


### 2. Surface and Ground Water Protection

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

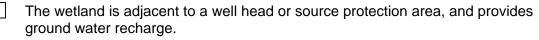
| Constricted or no outlets.                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Low water velocity through dense, persistent vegetation.                                                                                                                                                                                                                                                                                            |
| Hydroperiod permanently flooded or saturated.                                                                                                                                                                                                                                                                                                       |
| Wetlands in depositional environments with persistent vegetation wider than 20 feet.                                                                                                                                                                                                                                                                |
| Wetlands with persistent vegetation comprising a defined delta, island, bar or peninsula.                                                                                                                                                                                                                                                           |
| Presence of seeps or springs.                                                                                                                                                                                                                                                                                                                       |
| Wetland contains a high amount of microtopography that helps slow and filter surface water.                                                                                                                                                                                                                                                         |
| Position in the landscape indicates the wetland is a headwaters area.                                                                                                                                                                                                                                                                               |
| Wetland is adjacent to surface waters.                                                                                                                                                                                                                                                                                                              |
| Wetland recharges a drinking water source.                                                                                                                                                                                                                                                                                                          |
| Water sampling indicates removal of pollutants or nutrients.                                                                                                                                                                                                                                                                                        |
| Water sampling indicates retention of sediments or organic matter.                                                                                                                                                                                                                                                                                  |
| Fine mineral soils and alkalinity not low.                                                                                                                                                                                                                                                                                                          |
| The wetland provides an obvious filter between surface water or ground water and<br>land uses that may contribute point or nonpoint sources of sediments, toxic<br>substances or nutrients to the wetland, such as: steep erodible slopes; row crops;<br>dumps; areas of pesticide, herbicide or fertilizer application; feed lots; parking lots or |

If any of the above boxes are checked, the wetland provides this function. Complete the following to determine if the wetland provides this function above or below a moderate level.

Check box if any of the following conditions apply that may indicate the wetland provides this function at a *lower* level.



| 9/1 | 4/2 | 2010 |
|-----|-----|------|
|-----|-----|------|


nutrient uptake.

| Presence of ditches or channels that confine water and restrict contact of water with |
|---------------------------------------------------------------------------------------|
| vegetation.                                                                           |

Wetland is very small in size, not contiguous to a stream, and not part of a collection of small wetlands in the landscape that provide this function cumulatively.

Current use in the wetland results in disturbance that compromises this function.

Check box if any of the following conditions apply that may indicate the wetland provides this function at a *higher* level.



The wetland provides flows to Class A surface waters.



The wetland contributes to the protection or improvement of water quality of any impaired waters.

The wetland is large in size and naturally vegetated.

#### 3. Fish Habitat

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

Contains woody vegetation that overhangs the banks of a stream or river and provides any of the following: shading that controls summer water temperature; cover including refuges created by overhanging branches or undercut banks; source of terrestrial insects as fish food; or streambank stability.

Provides spawning, nursery, feeding or cover habitat for fish (documented or professionally judged). Common habitat includes deep marsh and shallow marsh associates with lakes and streams, and seasonally flooded wetlands associated with streams and rivers.

Documented or professionally judged spawning habitat for northern pike.

Provides cold spring discharge that lowers the temperature of receiving waters and creates summer habitat for salmonoid species.

The wetland is located along a tributary that does not support fish, but contributes to a larger body of water that does support fish. The tributary supports downstream fish by providing cooler water, and food sources.

### 4. Wildlife Habitat

| inction is present and likely to be significant: Any of the following physical and vegetative aracteristics indicate the wetland provides this function.                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Provides resting, feeding staging or roosting habitat to support waterfowl migration, and feeding habitat for wading birds. Good habitats for these species include open water wetlands.                                                                                                                                                                                             |
| Habitat to support one or more breeding pairs or broods of waterfowl including all species of ducks, geese, and swans. Good habitats for these species include open water habitats adjacent shallow marsh, deep marsh, shrub wetland, forested wetland, or naturally vegetated buffer zone.                                                                                          |
| Provides a nest site, a buffer for a nest site or feeding habitat for wading birds including but not limited to: great blue heron, black-crowned night heron, green-backed heron, cattle egret, or snowy egret. Good habitats for these species include open water or deep marsh adjacent to forested wetlands, or standing dead trees.                                              |
| Supports or has the habitat to support one or more breeding pairs of any migratory<br>bird that requires wetland habitat for breeding, nesting, rearing of young, feeding,<br>staging roosting, or migration, including: Virginia rail, common snipe, marsh wren,<br>American bittern, northern water thrush, northern harrier, spruce grouse, Cerulean<br>warbler, and common loon. |
| Supports winter habitat for white-tailed deer. Good habitats for these species include softwood swamps. Evidence of use includes deer browsing, bark stripping, worn trails, or pellet piles.                                                                                                                                                                                        |
| Provides important feeding habitat for black bear, bobcat, or moose based on an assessment of use. Good habitat for these types of species includes wetlands located in a forested mosaic.                                                                                                                                                                                           |
| Has the habitat to support muskrat, otter or mink. Good habitats for these species include deep marshes, wetlands adjacent to bodies of water including lakes, ponds, rivers and streams.                                                                                                                                                                                            |
| Supports an active beaver dam, one or more lodges, or evidence of use in two or more consecutive years by an adult beaver population.                                                                                                                                                                                                                                                |
| Provides the following habitats that support the reproduction of Uncommon Vermont<br>amphibian species including:                                                                                                                                                                                                                                                                    |
| <ol> <li>Wood Frog, Jefferson Salamander, Blue-spotted Salamander, or Spotted<br/>Salamander. Breeding habitat for these species includes vernal pools and<br/>small ponds.</li> </ol>                                                                                                                                                                                               |
| 2. Northern Dusky Salamander and the Spring Salamander. Habitat for these species includes headwater seeps, springs, and streams.                                                                                                                                                                                                                                                    |
| 3. The Four-toed salamander; Fowler's Toad; Western or Boreal Chorus frog, or<br>other amphibians found in Vermont of similar significance.                                                                                                                                                                                                                                          |

| 9/1 | 4 <u>/2</u> 0 |                   |                                                                                                                                                                                                                                                                                                                    |
|-----|---------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |               | specie<br>and ot  | rts or has the habitat to support significant populations of Vermont amphibian<br>s including, but not limited to Pickerel Frog, Northern Leopard Frog, Mink Frog,<br>hers found in Vermont of similar significance. Good habitat for these types of<br>s includes large marsh systems with open water components. |
|     |               | specie<br>Turtle, | rts or has the habitat to support populations of uncommon Vermont reptile<br>s including: Wood Turtle, Northern Map Turtle, Eastern Musk Turtle, Spotted<br>Spiny Softshell, Eastern Ribbonsnake, Northern Watersnake, and others found<br>nont of similar significance.                                           |
|     |               | specie            | rts or has the habitat to support significant populations of Vermont reptile<br>s, including Smooth Greensnake, DeKay's Brownsnake, or other more<br>on wetland-associated species.                                                                                                                                |
|     |               | Meets             | four or more of the following conditions indicative of wildlife habitat diversity:                                                                                                                                                                                                                                 |
|     |               | <b>□</b> 1.       | Three or more wetland vegetation classes (greater than 1/2 acre) present including but not limited to: open water contiguous to, but not necessarily part of, the wetland, deep marsh, shallow marsh, shrub swamp, forested swamp, fen, or bog;                                                                    |
|     |               | 2.                | The dominant vegetation class is one of the following types: deep marsh, shallow marsh, shrub swamp or, forested swamp;                                                                                                                                                                                            |
|     |               | 3.                | Located adjacent to a lake, pond, river or stream;                                                                                                                                                                                                                                                                 |
|     |               | <b>4</b> .        | Fifty percent or more of surrounding habitat type is one or more of the following: forest, agricultural land, old field or open land;                                                                                                                                                                              |
|     |               | 5.                | Emergent or woody vegetation occupies 26 to 75 percent of wetland, the rest is open water;                                                                                                                                                                                                                         |
|     |               | 6.                | One of the following:                                                                                                                                                                                                                                                                                              |
|     |               |                   | i. hydrologically connected to other wetlands of different dominant classes or open water within 1 mile;                                                                                                                                                                                                           |
|     |               |                   | ii. hydrologically connected to other wetlands of same dominant class within 1/2 mile;                                                                                                                                                                                                                             |
|     |               |                   | iii. within 1/4 mile of other wetlands of different dominant classes or open water, but not hydrologically connected;                                                                                                                                                                                              |
|     |               |                   | d or wetland complex is owned in whole or in part by state or federal ment and managed for wildlife and habitat conservation; and                                                                                                                                                                                  |
|     |               | Contair           | is evidence that it is used by wetland dependent wildlife species.                                                                                                                                                                                                                                                 |
|     |               | wing to           | above boxes are checked, the wetland provides this function. Complete the determine if the wetland provides this function above or below a moderate                                                                                                                                                                |
|     |               |                   | any of the following conditions apply that may indicate the wetland provides at a <i>lower</i> level.                                                                                                                                                                                                              |
|     |               | The we            | etland is small in size for its type and does not represent fugitive habitat in                                                                                                                                                                                                                                    |

| 9/1 | 4/20 | 10                                                                                                                                                                                 |
|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |      | developed areas (vernal pools and seeps are generally small in size, so this does not apply).                                                                                      |
|     |      | The surrounding land use is densely developed enough to limit use by wildlife species (with the exception of wetlands with open water habitat). Can be negated by evidence of use. |
|     |      | The current use in the wetland results in frequent cutting, mowing or other disturbance.                                                                                           |
|     |      | The wetland hydrology and character is at a drier end of the scale and does not support wetland dependent species.                                                                 |
|     |      | ck box if any of the following conditions apply that may indicate the wetland provides function at a <i>higher</i> level.                                                          |
|     |      | The wetland complex is large in size and high in quality.                                                                                                                          |
|     |      | The habitat has the potential to support several species based on the assessment above.                                                                                            |
|     |      | Wetland is associated with an important wildlife corridor.                                                                                                                         |
|     |      | The wetland has been identified by ANR-F&W as important habitat.                                                                                                                   |
|     |      |                                                                                                                                                                                    |

#### 5. Exemplary Wetland Natural Community

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

| Wetlands that are identified as high quality examples of Vermont's natural community types recognized by the Natural Heritage Information Project of the Vermont Fish and |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                           |
| Wildlife Department, including rare types such as dwarf shrub bogs, rich fens, alpine                                                                                     |
| peatlands, red maple-black gum swamps and the more common types including deep                                                                                            |
| bulrush marshes, cattail marshes, northern white cedar swamps, spruce-fir-tamarack                                                                                        |
| swamps, and red maple-black ash seepage swamps are automatically significant for                                                                                          |
| this function.                                                                                                                                                            |
|                                                                                                                                                                           |

The wetland is also likely to be significant if any of the following conditions are met:

| Is an example of a wetland natural community type that has been identified and |
|--------------------------------------------------------------------------------|
| mapped by, or meets the ranking and mapping standards of, the Natural Heritage |
| Information Project of the Vermont Fish and Wildlife Department.               |

Contains ecological features that contribute to Vermont's natural heritage, including, but not limited to:

Deep peat accumulation reflecting a long history of wetland formation;

| $\square$ | Forested wetlands displaying very | old trees and | other old growth | characteristics; |
|-----------|-----------------------------------|---------------|------------------|------------------|
|           | i olooloo wolanao aloplaying vory |               | i oli ola giomin | onalaotonotioo,  |

A wetland natural community that is at the edge of the normal range for that type;

A wetland mosaic containing examples of several to many wetland community types; or

A large wetland complex with examples of several wetland community types.

#### 6. Rare, Threatened, and Endangered Species Habitat

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

Wetlands that contain one or more species on the federal or state threatened or endangered lists, as well as species that are rare in Vermont, are automatically significant for this function.

The wetland is also likely to be significant if any of the following apply:

] There is creditable documentation that the wetland provides important habitat for any species on the federal or state threatened or endangered species lists;

There is creditable documentation that threatened or endangered species have been present in past 10 years;

] There is creditable documentation that the wetland provides important habitat for any species listed as rare in Vermont (S1 or S2 ranks), state historic (SH rank), or rare to uncommon globally (G1, G2, or G3 ranks) by the Natural Heritage Information Project of the Vermont Fish and Wildlife Department;

There is creditable documentation that the wetland provides habitat for multiple uncommon species of plants or animals (S3 rank).

List name of species and ranking:

#### 7. Education and Research in Natural Sciences

Function is present and likely to be significant: Any of the following characteristics indicate the wetland provides this function.

Owned by or leased to a public entity dedicated to education or research.



History of use for education or research.

Has one or more characteristics making it valuable for education or research.

| 8. | R | ecreational Value and Economic Benefits                                                                                       |
|----|---|-------------------------------------------------------------------------------------------------------------------------------|
|    |   | nction is present and likely to be significant: Any of the following characteristics indicate wetland provides this function. |
|    |   | Used for, or contributes to, recreational activities.                                                                         |
|    |   | Provides economic benefits.                                                                                                   |
|    |   | Provides important habitat for fish or wildlife which can be fished, hunted or trapped under applicable state law.            |
|    |   | Used for harvesting of wild foods.                                                                                            |
|    |   |                                                                                                                               |

Comments:

#### 9. Open Space and Aesthetics

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

Can be readily observed by the public; and

Possesses special or unique aesthetic qualities; or

Has prominence as a distinct feature in the surrounding landscape;

Has been identified as important open space in a municipal, regional or state plan.

### 10. Erosion Control through Binding and Stabilizing the Soil

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

Erosive forces such as wave or current energy are present and any of the following are present as well:

Dense, persistent vegetation along a shoreline or stream bank that reduces an adjacent erosive force.

Good interspersion of persistent emergent vegetation and water along course of water flow.

Studies show that wetlands of similar size, vegetation type, and hydrology are important for erosion control.

What type of erosive forces are present?

Lake fetch and waves

High current velocities

Water level influenced by upstream impoundment

If any of the above boxes are checked, the wetland provides this function. Complete the following to determine if the wetland provides this function above or below a moderate level.

Check box if any of the following conditions apply that may indicate the wetland provides this function at a *lower* level.

The stream is artificially channelized and/or lacks vegetation that contributes to controlling the erosive force.

Check box if any of the following conditions apply that may indicate the wetland provides this function at a *higher* level.

The stream contains high sinuosity.

Has been identified through fluvial geomorphic assessment to be important in maintaining the natural condition of the stream or river corridor.

| VERMONT                                                      | WETLAND     | EVALUATION FORM                                                 |   |
|--------------------------------------------------------------|-------------|-----------------------------------------------------------------|---|
| Project Name: Velco New Haven                                | BCC NH-2    | 02 Project #: 195601363                                         | _ |
| Date: 11/1/2017                                              | Investigato | <sub>or:</sub> EDB                                              |   |
| SUMMARY OF FUNCTIONAL EV<br>Each function gets a score of 0= |             | <u>N:</u><br>;; L = Low; P = Present; or H = High.              |   |
| 1. Water Storage for Flood Water and<br>Storm Runoff         | Р           | 6. Rare, Threatened, and Endangered<br>Species Habitat          | 0 |
|                                                              |             |                                                                 |   |
| 2. Surface & Ground Water Protection                         | Н           | 7. Education and Research in Natural<br>Sciences                | 0 |
|                                                              |             |                                                                 |   |
| 3. Fish Habitat                                              | 0           | 8. Recreational Value and Economic<br>Benefits                  | 0 |
|                                                              |             |                                                                 |   |
| 4. Wildlife Habitat                                          | 0           | 9. Open Space and Aesthetics                                    | 0 |
|                                                              |             |                                                                 |   |
| 5. Exemplary Wetland Natural<br>Community                    | 0           | 10. Erosion Control through Binding and<br>Stabilizing the Soil | 0 |

#### Note:

- When to use this form: This is a field form to help you compile data needed to evaluate the 10 possible functions and values of a wetland as described in the Vermont Wetland Rules. All information in this form is replicated in the applications for both wetland determinations and wetland permits.
- Both a desktop review and field examination should be employed to accurately determine surrounding land use, hydrology, hydroperiod, vegetation, position in the landscape, and physical attributes.
- **The entire wetland or wetland complex** in question must be evaluated to determine the level of function in all ten (10) categories for accurate classification. A wetland complex can be defined as a series of interconnected wetland types.
- **The surrounding upland and outflow area** of the wetland should be examined to determine land use, development, nearby natural resources, and hydrology. The surrounding land use, previous development, and cumulative impacts may play a role in the current function of the wetland. For best results please read all descriptions prior to scoring activity.
- **Evaluation**: The first portion in each section determines whether the wetland does or does not provide the function. If none of the conditions listed in the first section are met, proceed

to the next section. If any of these conditions are met, determine if the wetland provides this function at a higher or lower level based on the information listed in the subsequent sections.

- **Presumptions:** Please note that many wetlands are already presumed to be significant under the Vermont Wetland Rules. A wetland is presumed to be significant if:
  - o The wetland is mapped on the VSWI map
  - o The wetland is contiguous to a VSWI mapped wetland
  - The wetland meets the presumptions of significance under Section 4.6
  - o The wetland has a preliminary determination that it is Class II

## 1. Water Storage for Flood Water and Storm Runoff

|  | Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.                                                                                            |  |  |
|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|  | Constricted outlet or no outlet and an unconstricted inlet.                                                                                                                                                                                            |  |  |
|  | Physical space for floodwater expansion and dense, persistent, emergent vegetation<br>or dense woody vegetation that slows down flood waters or stormwater runoff during<br>peak flows and facilitates water removal by evaporation and transpiration. |  |  |
|  | If a stream is present, its course is sinuous and there is sufficient woody vegetation to intercept surface flows in the portion of the wetland that floods.                                                                                           |  |  |
|  | Physical evidence of seasonal flooding or ponding such as water stained leaves, water marks on trees, drift rows, debris deposits, or standing water.                                                                                                  |  |  |
|  | Hydrologic or hydraulic study indicates wetland attenuates flooding.                                                                                                                                                                                   |  |  |
|  | y of the above boxes are checked, the wetland provides this function. Complete the<br>wing to determine if the wetland provides this function above or below a moderate<br>:                                                                           |  |  |
|  | k box if any of the following conditions apply that may indicate the wetland provides function at a <i>lower</i> level.                                                                                                                                |  |  |
|  | Significant flood storage capacity upstream of the wetland, and the wetland in question provides this function at a negligible level in comparison to upstream storage (unless the upstream storage is temporary such as a beaver impoundment).        |  |  |
|  | Wetland is contiguous to a major lake or pond that provides storage benefits independently of the wetland.                                                                                                                                             |  |  |
|  | Wetland's storage capacity is created primarily by recent beaver dams or other temporary structures.                                                                                                                                                   |  |  |
|  | Wetland is very small in size, not contiguous to a stream, and not part of a collection of small wetlands in the landscape that provide this function cumulatively.                                                                                    |  |  |
|  | k box if any of the following conditions apply that may indicate the wetland provides function at a <i>higher</i> level.                                                                                                                               |  |  |
|  | History of downstream flood damage to public or private property.                                                                                                                                                                                      |  |  |
|  | Any of the following conditions present downstream of the wetland, but upstream of a major lake or pond, could be impacted by a loss or reduction of the water storage function.                                                                       |  |  |
|  | 1. Developed public or private property.                                                                                                                                                                                                               |  |  |
|  | 2. Stream banks susceptible to scouring and erosion.                                                                                                                                                                                                   |  |  |
|  | 3. Important habitat for aquatic life.                                                                                                                                                                                                                 |  |  |
|  | The wetland is large in size and naturally vegetated.                                                                                                                                                                                                  |  |  |

level.

| Any of the following conditions present upstream of the wetland may indicate a large |
|--------------------------------------------------------------------------------------|
| volume of runoff may reach the wetland.                                              |

- 1. A large amount of impervious surface in urbanized areas.
  - 2. Relatively impervious soils.
  - 3. Steep slopes in the adjacent areas.

#### 2. Surface and Ground Water Protection

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

| •                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Constricted or no outlets.                                                                                                                                                                                                                                                                                                                                                                        |
| Low water velocity through dense, persistent vegetation.                                                                                                                                                                                                                                                                                                                                          |
| Hydroperiod permanently flooded or saturated.                                                                                                                                                                                                                                                                                                                                                     |
| Wetlands in depositional environments with persistent vegetation wider than 20 feet.                                                                                                                                                                                                                                                                                                              |
| Wetlands with persistent vegetation comprising a defined delta, island, bar or peninsula.                                                                                                                                                                                                                                                                                                         |
| Presence of seeps or springs.                                                                                                                                                                                                                                                                                                                                                                     |
| Wetland contains a high amount of microtopography that helps slow and filter surface water.                                                                                                                                                                                                                                                                                                       |
| Position in the landscape indicates the wetland is a headwaters area.                                                                                                                                                                                                                                                                                                                             |
| Wetland is adjacent to surface waters.                                                                                                                                                                                                                                                                                                                                                            |
| Wetland recharges a drinking water source.                                                                                                                                                                                                                                                                                                                                                        |
| Water sampling indicates removal of pollutants or nutrients.                                                                                                                                                                                                                                                                                                                                      |
| Water sampling indicates retention of sediments or organic matter.                                                                                                                                                                                                                                                                                                                                |
| Fine mineral soils and alkalinity not low.                                                                                                                                                                                                                                                                                                                                                        |
| The wetland provides an obvious filter between surface water or ground water and<br>land uses that may contribute point or nonpoint sources of sediments, toxic<br>substances or nutrients to the wetland, such as: steep erodible slopes; row crops;<br>dumps; areas of pesticide, herbicide or fertilizer application; feed lots; parking lots or<br>heavily traveled road; and septic systems. |
| y of the above boxes are checked, the wetland provides this function. Complete the wing to determine if the wetland provides this function above or below a moderate                                                                                                                                                                                                                              |

Check box if any of the following conditions apply that may indicate the wetland provides this function at a *lower* level.

Presence of dead forest or shrub areas in sufficient amounts to result in diminished

| 9/1                                                                                                   | 4/201 | 10                                                                                                                                                                  |  |
|-------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                       |       | nutrient uptake.                                                                                                                                                    |  |
|                                                                                                       |       | Presence of ditches or channels that confine water and restrict contact of water with vegetation.                                                                   |  |
|                                                                                                       |       | Wetland is very small in size, not contiguous to a stream, and not part of a collection of small wetlands in the landscape that provide this function cumulatively. |  |
|                                                                                                       |       | Current use in the wetland results in disturbance that compromises this function.                                                                                   |  |
|                                                                                                       |       | k box if any of the following conditions apply that may indicate the wetland provides unction at a <i>higher</i> level.                                             |  |
| The wetland is adjacent to a well head or source protection area, and provi<br>ground water recharge. |       |                                                                                                                                                                     |  |
|                                                                                                       |       | The wetland provides flows to Class A surface waters.                                                                                                               |  |
|                                                                                                       |       | The wetland contributes to the protection or improvement of water quality of any impaired waters.                                                                   |  |
|                                                                                                       |       | The wetland is large in size and naturally vegetated.                                                                                                               |  |

#### 3. Fish Habitat

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

Contains woody vegetation that overhangs the banks of a stream or river and provides any of the following: shading that controls summer water temperature; cover including refuges created by overhanging branches or undercut banks; source of terrestrial insects as fish food; or streambank stability.

Provides spawning, nursery, feeding or cover habitat for fish (documented or professionally judged). Common habitat includes deep marsh and shallow marsh associates with lakes and streams, and seasonally flooded wetlands associated with streams and rivers.

|  | Documented or professional | ly judged spawning habitat for northern p | pike. |
|--|----------------------------|-------------------------------------------|-------|
|  |                            |                                           |       |

Provides cold spring discharge that lowers the temperature of receiving waters and creates summer habitat for salmonoid species.

| The wetland is located along a tributary that does not support fish, but contributes to |
|-----------------------------------------------------------------------------------------|
| a larger body of water that does support fish. The tributary supports downstream fish   |
| by providing cooler water, and food sources.                                            |

### 4. Wildlife Habitat

| inction is present and likely to be significant: Any of the following physical and vegetative aracteristics indicate the wetland provides this function.                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Provides resting, feeding staging or roosting habitat to support waterfowl migration, and feeding habitat for wading birds. Good habitats for these species include open water wetlands.                                                                                                                                                                                             |
| Habitat to support one or more breeding pairs or broods of waterfowl including all species of ducks, geese, and swans. Good habitats for these species include open water habitats adjacent shallow marsh, deep marsh, shrub wetland, forested wetland, or naturally vegetated buffer zone.                                                                                          |
| Provides a nest site, a buffer for a nest site or feeding habitat for wading birds including but not limited to: great blue heron, black-crowned night heron, green-backed heron, cattle egret, or snowy egret. Good habitats for these species include open water or deep marsh adjacent to forested wetlands, or standing dead trees.                                              |
| Supports or has the habitat to support one or more breeding pairs of any migratory<br>bird that requires wetland habitat for breeding, nesting, rearing of young, feeding,<br>staging roosting, or migration, including: Virginia rail, common snipe, marsh wren,<br>American bittern, northern water thrush, northern harrier, spruce grouse, Cerulean<br>warbler, and common loon. |
| Supports winter habitat for white-tailed deer. Good habitats for these species include softwood swamps. Evidence of use includes deer browsing, bark stripping, worn trails, or pellet piles.                                                                                                                                                                                        |
| Provides important feeding habitat for black bear, bobcat, or moose based on an assessment of use. Good habitat for these types of species includes wetlands located in a forested mosaic.                                                                                                                                                                                           |
| Has the habitat to support muskrat, otter or mink. Good habitats for these species include deep marshes, wetlands adjacent to bodies of water including lakes, ponds, rivers and streams.                                                                                                                                                                                            |
| Supports an active beaver dam, one or more lodges, or evidence of use in two or more consecutive years by an adult beaver population.                                                                                                                                                                                                                                                |
| Provides the following habitats that support the reproduction of Uncommon Vermont<br>amphibian species including:                                                                                                                                                                                                                                                                    |
| <ol> <li>Wood Frog, Jefferson Salamander, Blue-spotted Salamander, or Spotted<br/>Salamander. Breeding habitat for these species includes vernal pools and<br/>small ponds.</li> </ol>                                                                                                                                                                                               |
| 2. Northern Dusky Salamander and the Spring Salamander. Habitat for these species includes headwater seeps, springs, and streams.                                                                                                                                                                                                                                                    |
| 3. The Four-toed salamander; Fowler's Toad; Western or Boreal Chorus frog, or<br>other amphibians found in Vermont of similar significance.                                                                                                                                                                                                                                          |

| 9/1 | 4/20 | Suppo<br>specie<br>and ot | es includ<br>hers fou | is the habitat to support signific<br>ing, but not limited to Pickerel<br>nd in Vermont of similar significs<br>es large marsh systems with c | Frog, Northern Leopard Ficance. Good habitat for | Frog, Mink Frog, |
|-----|------|---------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------|
|     |      | specie<br>Turtle,         | s includ<br>Spiny S   | is the habitat to support popula<br>ing: Wood Turtle, Northern Ma<br>Softshell, Eastern Ribbonsnake<br>similar significance.                  | ap Turtle, Eastern Musk T                        | urtle, Spotted   |
|     |      | specie                    | s, inclu              | s the habitat to support signific<br>ling Smooth Greensnake, Dek<br>nd-associated species.                                                    |                                                  |                  |
|     |      | Meets                     | four or               | nore of the following condition                                                                                                               | s indicative of wildlife hab                     | oitat diversity: |
|     |      | <b>□</b> 1.               | includi               | or more wetland vegetation clang but not limited to: open wate<br>wetland, deep marsh, shallow<br>bog;                                        | er contiguous to, but not r                      | necessarily part |
|     |      | 2.                        |                       | minant vegetation class is one<br>/ marsh, shrub swamp or, fore                                                                               |                                                  | eep marsh,       |
|     |      | 3.                        | Locate                | d adjacent to a lake, pond, rive                                                                                                              | er or stream;                                    |                  |
|     |      | <b>4</b> .                | •••                   | rcent or more of surrounding h<br>ng: forest, agricultural land, old                                                                          |                                                  | e of the         |
|     |      | 5.                        | •                     | ent or woody vegetation occup<br>water;                                                                                                       | vies 26 to 75 percent of we                      | etland, the rest |
|     |      | <b>6</b> .                | One of                | the following:                                                                                                                                |                                                  |                  |
|     |      |                           | 🗌 i.                  | hydrologically connected to ot<br>classes or open water within ?                                                                              |                                                  | dominant         |
|     |      |                           | 🔳 ii.                 | hydrologically connected to or within 1/2 mile;                                                                                               | ther wetlands of same do                         | minant class     |
|     |      |                           | 🗌 iii.                | within 1/4 mile of other wetland water, but not hydrologically c                                                                              |                                                  | lasses or open   |
|     |      |                           |                       | tland complex is owned in who<br>nd managed for wildlife and ha                                                                               | • •                                              | ederal           |
|     |      | Contair                   | ns evide              | nce that it is used by wetland o                                                                                                              | dependent wildlife species                       | 5.               |
|     |      | wing to                   |                       | boxes are checked, the wetlan<br>the if the wetland provides this                                                                             |                                                  |                  |
|     |      |                           | •                     | he following conditions apply t<br>ver level.                                                                                                 | hat may indicate the weth                        | and provides     |
|     |      | The we                    | etland is             | small in size for its type and c                                                                                                              | loes not represent fugitive                      | e habitat in     |

| 9/1 | 4/20 | 10                                                                                                                                                                                 |
|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |      | developed areas (vernal pools and seeps are generally small in size, so this does not apply).                                                                                      |
|     |      | The surrounding land use is densely developed enough to limit use by wildlife species (with the exception of wetlands with open water habitat). Can be negated by evidence of use. |
|     |      | The current use in the wetland results in frequent cutting, mowing or other disturbance.                                                                                           |
|     |      | The wetland hydrology and character is at a drier end of the scale and does not support wetland dependent species.                                                                 |
|     |      | ck box if any of the following conditions apply that may indicate the wetland provides function at a <i>higher</i> level.                                                          |
|     |      | The wetland complex is large in size and high in quality.                                                                                                                          |
|     |      | The habitat has the potential to support several species based on the assessment above.                                                                                            |
|     |      | Wetland is associated with an important wildlife corridor.                                                                                                                         |
|     |      | The wetland has been identified by ANR-F&W as important habitat.                                                                                                                   |
|     |      |                                                                                                                                                                                    |

#### 5. Exemplary Wetland Natural Community

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

| Wetlands that are identified as high quality examples of Vermont's natural community types recognized by the Natural Heritage Information Project of the Vermont Fish and |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                           |
| Wildlife Department, including rare types such as dwarf shrub bogs, rich fens, alpine                                                                                     |
| peatlands, red maple-black gum swamps and the more common types including deep                                                                                            |
| bulrush marshes, cattail marshes, northern white cedar swamps, spruce-fir-tamarack                                                                                        |
| swamps, and red maple-black ash seepage swamps are automatically significant for                                                                                          |
| this function.                                                                                                                                                            |
|                                                                                                                                                                           |

The wetland is also likely to be significant if any of the following conditions are met:

| Is an example of a wetland natural community type that has been identified and |
|--------------------------------------------------------------------------------|
| mapped by, or meets the ranking and mapping standards of, the Natural Heritage |
| Information Project of the Vermont Fish and Wildlife Department.               |

Contains ecological features that contribute to Vermont's natural heritage, including, but not limited to:

Deep peat accumulation reflecting a long history of wetland formation;

| $\square$ | Forested wetlands displaying very | old trees and | other old growth | characteristics; |
|-----------|-----------------------------------|---------------|------------------|------------------|
|           | i olooloo wolanao aloplaying vory |               | i oli ola giomin | onalaotonotioo,  |

A wetland natural community that is at the edge of the normal range for that type;

A wetland mosaic containing examples of several to many wetland community types; or

A large wetland complex with examples of several wetland community types.

#### 6. Rare, Threatened, and Endangered Species Habitat

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

Wetlands that contain one or more species on the federal or state threatened or endangered lists, as well as species that are rare in Vermont, are automatically significant for this function.

The wetland is also likely to be significant if any of the following apply:

] There is creditable documentation that the wetland provides important habitat for any species on the federal or state threatened or endangered species lists;

There is creditable documentation that threatened or endangered species have been present in past 10 years;

] There is creditable documentation that the wetland provides important habitat for any species listed as rare in Vermont (S1 or S2 ranks), state historic (SH rank), or rare to uncommon globally (G1, G2, or G3 ranks) by the Natural Heritage Information Project of the Vermont Fish and Wildlife Department;

There is creditable documentation that the wetland provides habitat for multiple uncommon species of plants or animals (S3 rank).

List name of species and ranking:

#### 7. Education and Research in Natural Sciences

Function is present and likely to be significant: Any of the following characteristics indicate the wetland provides this function.

Owned by or leased to a public entity dedicated to education or research.



History of use for education or research.

Has one or more characteristics making it valuable for education or research.

| 8. | R | ecreational Value and Economic Benefits                                                                                       |
|----|---|-------------------------------------------------------------------------------------------------------------------------------|
|    |   | nction is present and likely to be significant: Any of the following characteristics indicate wetland provides this function. |
|    |   | Used for, or contributes to, recreational activities.                                                                         |
|    |   | Provides economic benefits.                                                                                                   |
|    |   | Provides important habitat for fish or wildlife which can be fished, hunted or trapped under applicable state law.            |
|    |   | Used for harvesting of wild foods.                                                                                            |
|    |   |                                                                                                                               |

Comments:

#### 9. Open Space and Aesthetics

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

Can be readily observed by the public; and

Possesses special or unique aesthetic qualities; or

Has prominence as a distinct feature in the surrounding landscape;

Has been identified as important open space in a municipal, regional or state plan.

### 10. Erosion Control through Binding and Stabilizing the Soil

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

Erosive forces such as wave or current energy are present and any of the following are present as well:

Dense, persistent vegetation along a shoreline or stream bank that reduces an adjacent erosive force.

Good interspersion of persistent emergent vegetation and water along course of water flow.

Studies show that wetlands of similar size, vegetation type, and hydrology are important for erosion control.

What type of erosive forces are present?

Lake fetch and waves

High current velocities

Water level influenced by upstream impoundment

If any of the above boxes are checked, the wetland provides this function. Complete the following to determine if the wetland provides this function above or below a moderate level.

Check box if any of the following conditions apply that may indicate the wetland provides this function at a *lower* level.

The stream is artificially channelized and/or lacks vegetation that contributes to controlling the erosive force.

Check box if any of the following conditions apply that may indicate the wetland provides this function at a *higher* level.

The stream contains high sinuosity.

Has been identified through fluvial geomorphic assessment to be important in maintaining the natural condition of the stream or river corridor.

| VERMONT WETLAND EVALUATION FORM                              |             |                                                                 |   |  |  |
|--------------------------------------------------------------|-------------|-----------------------------------------------------------------|---|--|--|
| Project Name: Velco New Haven                                | BCC NH-2    | <sup>03</sup> Project #: 195601363                              | _ |  |  |
| Date: 11/1/2017                                              | Investigato | <sub>pr:</sub> EDB                                              |   |  |  |
| SUMMARY OF FUNCTIONAL EV<br>Each function gets a score of 0= |             | <u>N:</u><br>;; L = Low; P = Present; or H = High.              |   |  |  |
| 1. Water Storage for Flood Water and<br>Storm Runoff         | Р           | 6. Rare, Threatened, and Endangered<br>Species Habitat          | 0 |  |  |
|                                                              |             |                                                                 |   |  |  |
| 2. Surface & Ground Water Protection                         | L           | 7. Education and Research in Natural<br>Sciences                | 0 |  |  |
|                                                              |             |                                                                 |   |  |  |
| 3. Fish Habitat                                              | 0           | 8. Recreational Value and Economic<br>Benefits                  | 0 |  |  |
|                                                              |             |                                                                 |   |  |  |
| 4. Wildlife Habitat                                          | 0           | 9. Open Space and Aesthetics                                    | 0 |  |  |
|                                                              |             |                                                                 |   |  |  |
| 5. Exemplary Wetland Natural<br>Community                    | 0           | 10. Erosion Control through Binding and<br>Stabilizing the Soil | 0 |  |  |

#### Note:

- When to use this form: This is a field form to help you compile data needed to evaluate the 10 possible functions and values of a wetland as described in the Vermont Wetland Rules. All information in this form is replicated in the applications for both wetland determinations and wetland permits.
- Both a desktop review and field examination should be employed to accurately determine surrounding land use, hydrology, hydroperiod, vegetation, position in the landscape, and physical attributes.
- **The entire wetland or wetland complex** in question must be evaluated to determine the level of function in all ten (10) categories for accurate classification. A wetland complex can be defined as a series of interconnected wetland types.
- **The surrounding upland and outflow area** of the wetland should be examined to determine land use, development, nearby natural resources, and hydrology. The surrounding land use, previous development, and cumulative impacts may play a role in the current function of the wetland. For best results please read all descriptions prior to scoring activity.
- **Evaluation**: The first portion in each section determines whether the wetland does or does not provide the function. If none of the conditions listed in the first section are met, proceed

to the next section. If any of these conditions are met, determine if the wetland provides this function at a higher or lower level based on the information listed in the subsequent sections.

- **Presumptions:** Please note that many wetlands are already presumed to be significant under the Vermont Wetland Rules. A wetland is presumed to be significant if:
  - o The wetland is mapped on the VSWI map
  - o The wetland is contiguous to a VSWI mapped wetland
  - The wetland meets the presumptions of significance under Section 4.6
  - o The wetland has a preliminary determination that it is Class II

## 1. Water Storage for Flood Water and Storm Runoff

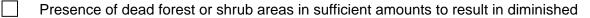
|                                                       | unction is present and likely to be significant: Any of the following physical and vegetative aracteristics indicate the wetland provides this function.                                                                                               |  |  |  |  |  |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                       | Constricted outlet or no outlet and an unconstricted inlet.                                                                                                                                                                                            |  |  |  |  |  |
|                                                       | Physical space for floodwater expansion and dense, persistent, emergent vegetation<br>or dense woody vegetation that slows down flood waters or stormwater runoff during<br>peak flows and facilitates water removal by evaporation and transpiration. |  |  |  |  |  |
|                                                       | If a stream is present, its course is sinuous and there is sufficient woody vegetation to intercept surface flows in the portion of the wetland that floods.                                                                                           |  |  |  |  |  |
|                                                       | Physical evidence of seasonal flooding or ponding such as water stained leaves, water marks on trees, drift rows, debris deposits, or standing water.                                                                                                  |  |  |  |  |  |
|                                                       | Hydrologic or hydraulic study indicates wetland attenuates flooding.                                                                                                                                                                                   |  |  |  |  |  |
|                                                       | y of the above boxes are checked, the wetland provides this function. Complete the<br>wing to determine if the wetland provides this function above or below a moderate<br>:                                                                           |  |  |  |  |  |
|                                                       | k box if any of the following conditions apply that may indicate the wetland provides function at a <i>lower</i> level.                                                                                                                                |  |  |  |  |  |
|                                                       | Significant flood storage capacity upstream of the wetland, and the wetland in question provides this function at a negligible level in comparison to upstream storage (unless the upstream storage is temporary such as a beaver impoundment).        |  |  |  |  |  |
|                                                       | Wetland is contiguous to a major lake or pond that provides storage benefits independently of the wetland.                                                                                                                                             |  |  |  |  |  |
|                                                       | Wetland's storage capacity is created primarily by recent beaver dams or other temporary structures.                                                                                                                                                   |  |  |  |  |  |
|                                                       | Wetland is very small in size, not contiguous to a stream, and not part of a collection of small wetlands in the landscape that provide this function cumulatively.                                                                                    |  |  |  |  |  |
|                                                       | k box if any of the following conditions apply that may indicate the wetland provides function at a <i>higher</i> level.                                                                                                                               |  |  |  |  |  |
|                                                       | History of downstream flood damage to public or private property.                                                                                                                                                                                      |  |  |  |  |  |
|                                                       | Any of the following conditions present downstream of the wetland, but upstream of a major lake or pond, could be impacted by a loss or reduction of the water storage function.                                                                       |  |  |  |  |  |
|                                                       | 1. Developed public or private property.                                                                                                                                                                                                               |  |  |  |  |  |
|                                                       | 2. Stream banks susceptible to scouring and erosion.                                                                                                                                                                                                   |  |  |  |  |  |
|                                                       | 3. Important habitat for aquatic life.                                                                                                                                                                                                                 |  |  |  |  |  |
| The wetland is large in size and naturally vegetated. |                                                                                                                                                                                                                                                        |  |  |  |  |  |

| Any of the following conditions present upstream of the wetland may indicate a large |
|--------------------------------------------------------------------------------------|
| volume of runoff may reach the wetland.                                              |

- 1. A large amount of impervious surface in urbanized areas.
- 2. Relatively impervious soils.

heavily traveled road; and septic systems.

3. Steep slopes in the adjacent areas.


#### 2. Surface and Ground Water Protection

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

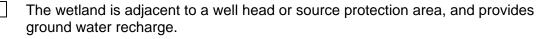
| Constricted or no outlets.                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Low water velocity through dense, persistent vegetation.                                                                                                                                                                                                                                                                                            |
| Hydroperiod permanently flooded or saturated.                                                                                                                                                                                                                                                                                                       |
| Wetlands in depositional environments with persistent vegetation wider than 20 feet.                                                                                                                                                                                                                                                                |
| Wetlands with persistent vegetation comprising a defined delta, island, bar or peninsula.                                                                                                                                                                                                                                                           |
| Presence of seeps or springs.                                                                                                                                                                                                                                                                                                                       |
| Wetland contains a high amount of microtopography that helps slow and filter surface water.                                                                                                                                                                                                                                                         |
| Position in the landscape indicates the wetland is a headwaters area.                                                                                                                                                                                                                                                                               |
| Wetland is adjacent to surface waters.                                                                                                                                                                                                                                                                                                              |
| Wetland recharges a drinking water source.                                                                                                                                                                                                                                                                                                          |
| Water sampling indicates removal of pollutants or nutrients.                                                                                                                                                                                                                                                                                        |
| Water sampling indicates retention of sediments or organic matter.                                                                                                                                                                                                                                                                                  |
| Fine mineral soils and alkalinity not low.                                                                                                                                                                                                                                                                                                          |
| The wetland provides an obvious filter between surface water or ground water and<br>land uses that may contribute point or nonpoint sources of sediments, toxic<br>substances or nutrients to the wetland, such as: steep erodible slopes; row crops;<br>dumps; areas of pesticide, herbicide or fertilizer application; feed lots; parking lots or |

If any of the above boxes are checked, the wetland provides this function. Complete the following to determine if the wetland provides this function above or below a moderate level.

Check box if any of the following conditions apply that may indicate the wetland provides this function at a *lower* level.



| 9/1 | 4/ | 20 | 1 | 0 |
|-----|----|----|---|---|
|-----|----|----|---|---|


nutrient uptake.

| Presence of ditches or channels that confine water and restrict contact of water with |
|---------------------------------------------------------------------------------------|
| vegetation.                                                                           |

Wetland is very small in size, not contiguous to a stream, and not part of a collection of small wetlands in the landscape that provide this function cumulatively.

Current use in the wetland results in disturbance that compromises this function.

Check box if any of the following conditions apply that may indicate the wetland provides this function at a *higher* level.



The wetland provides flows to Class A surface waters.



The wetland contributes to the protection or improvement of water quality of any impaired waters.

The wetland is large in size and naturally vegetated.

#### 3. Fish Habitat

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

Contains woody vegetation that overhangs the banks of a stream or river and provides any of the following: shading that controls summer water temperature; cover including refuges created by overhanging branches or undercut banks; source of terrestrial insects as fish food; or streambank stability.

Provides spawning, nursery, feeding or cover habitat for fish (documented or professionally judged). Common habitat includes deep marsh and shallow marsh associates with lakes and streams, and seasonally flooded wetlands associated with streams and rivers.

Documented or professionally judged spawning habitat for northern pike.

Provides cold spring discharge that lowers the temperature of receiving waters and creates summer habitat for salmonoid species.

The wetland is located along a tributary that does not support fish, but contributes to a larger body of water that does support fish. The tributary supports downstream fish by providing cooler water, and food sources.

### 4. Wildlife Habitat

| inction is present and likely to be significant: Any of the following physical and vegetative aracteristics indicate the wetland provides this function.                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Provides resting, feeding staging or roosting habitat to support waterfowl migration, and feeding habitat for wading birds. Good habitats for these species include open water wetlands.                                                                                                                                                                                             |
| Habitat to support one or more breeding pairs or broods of waterfowl including all species of ducks, geese, and swans. Good habitats for these species include open water habitats adjacent shallow marsh, deep marsh, shrub wetland, forested wetland, or naturally vegetated buffer zone.                                                                                          |
| Provides a nest site, a buffer for a nest site or feeding habitat for wading birds including but not limited to: great blue heron, black-crowned night heron, green-backed heron, cattle egret, or snowy egret. Good habitats for these species include open water or deep marsh adjacent to forested wetlands, or standing dead trees.                                              |
| Supports or has the habitat to support one or more breeding pairs of any migratory<br>bird that requires wetland habitat for breeding, nesting, rearing of young, feeding,<br>staging roosting, or migration, including: Virginia rail, common snipe, marsh wren,<br>American bittern, northern water thrush, northern harrier, spruce grouse, Cerulean<br>warbler, and common loon. |
| Supports winter habitat for white-tailed deer. Good habitats for these species include softwood swamps. Evidence of use includes deer browsing, bark stripping, worn trails, or pellet piles.                                                                                                                                                                                        |
| Provides important feeding habitat for black bear, bobcat, or moose based on an assessment of use. Good habitat for these types of species includes wetlands located in a forested mosaic.                                                                                                                                                                                           |
| Has the habitat to support muskrat, otter or mink. Good habitats for these species include deep marshes, wetlands adjacent to bodies of water including lakes, ponds, rivers and streams.                                                                                                                                                                                            |
| Supports an active beaver dam, one or more lodges, or evidence of use in two or more consecutive years by an adult beaver population.                                                                                                                                                                                                                                                |
| Provides the following habitats that support the reproduction of Uncommon Vermont<br>amphibian species including:                                                                                                                                                                                                                                                                    |
| <ol> <li>Wood Frog, Jefferson Salamander, Blue-spotted Salamander, or Spotted<br/>Salamander. Breeding habitat for these species includes vernal pools and<br/>small ponds.</li> </ol>                                                                                                                                                                                               |
| 2. Northern Dusky Salamander and the Spring Salamander. Habitat for these species includes headwater seeps, springs, and streams.                                                                                                                                                                                                                                                    |
| 3. The Four-toed salamander; Fowler's Toad; Western or Boreal Chorus frog, or<br>other amphibians found in Vermont of similar significance.                                                                                                                                                                                                                                          |

| 9/1 | 4/20 | Suppo<br>specie<br>and ot | s includ<br>hers fou | is the habitat to support signific<br>ing, but not limited to Pickerel<br>nd in Vermont of similar significes are significed as the second seco | Frog, Northern Leopard Ficance. Good habitat for | Frog, Mink Frog, |
|-----|------|---------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------|
|     |      | specie<br>Turtle,         | s includ<br>Spiny S  | is the habitat to support popula<br>ing: Wood Turtle, Northern Ma<br>Softshell, Eastern Ribbonsnake<br>similar significance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ap Turtle, Eastern Musk T                        | urtle, Spotted   |
|     |      | specie                    | s, inclu             | s the habitat to support signific<br>ling Smooth Greensnake, Dek<br>nd-associated species.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                  |
|     |      | Meets                     | four or              | nore of the following condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s indicative of wildlife hab                     | oitat diversity: |
|     |      | <b>□</b> 1.               | includi              | or more wetland vegetation clang but not limited to: open wate<br>wetland, deep marsh, shallow<br>bog;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | er contiguous to, but not r                      | necessarily part |
|     |      | 2.                        |                      | minant vegetation class is one<br>/ marsh, shrub swamp or, fore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | eep marsh,       |
|     |      | 3.                        | Locate               | d adjacent to a lake, pond, rive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | er or stream;                                    |                  |
|     |      | <b>4</b> .                | •••                  | rcent or more of surrounding h<br>ng: forest, agricultural land, old                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  | e of the         |
|     |      | 5.                        | •                    | ent or woody vegetation occup<br>water;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | vies 26 to 75 percent of we                      | etland, the rest |
|     |      | <b>6</b> .                | One of               | the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                  |
|     |      |                           | 🗌 i.                 | hydrologically connected to ot<br>classes or open water within ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  | dominant         |
|     |      |                           | 🔳 ii.                | hydrologically connected to or within 1/2 mile;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ther wetlands of same do                         | minant class     |
|     |      |                           | 🗌 iii.               | within 1/4 mile of other wetland water, but not hydrologically c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  | lasses or open   |
|     |      |                           |                      | tland complex is owned in who<br>nd managed for wildlife and ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • •                                              | ederal           |
|     |      | Contair                   | ns evide             | nce that it is used by wetland o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dependent wildlife species                       | 5.               |
|     |      | wing to                   |                      | boxes are checked, the wetlan<br>the if the wetland provides this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |                  |
|     |      |                           | •                    | he following conditions apply t<br>ver level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | hat may indicate the weth                        | and provides     |
|     |      | The we                    | etland is            | small in size for its type and c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | loes not represent fugitive                      | e habitat in     |

| 9/1 | 4/20 | 10                                                                                                                                                                                 |
|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |      | developed areas (vernal pools and seeps are generally small in size, so this does not apply).                                                                                      |
|     |      | The surrounding land use is densely developed enough to limit use by wildlife species (with the exception of wetlands with open water habitat). Can be negated by evidence of use. |
|     |      | The current use in the wetland results in frequent cutting, mowing or other disturbance.                                                                                           |
|     |      | The wetland hydrology and character is at a drier end of the scale and does not support wetland dependent species.                                                                 |
|     |      | ck box if any of the following conditions apply that may indicate the wetland provides function at a <i>higher</i> level.                                                          |
|     |      | The wetland complex is large in size and high in quality.                                                                                                                          |
|     |      | The habitat has the potential to support several species based on the assessment above.                                                                                            |
|     |      | Wetland is associated with an important wildlife corridor.                                                                                                                         |
|     |      | The wetland has been identified by ANR-F&W as important habitat.                                                                                                                   |
|     |      |                                                                                                                                                                                    |

#### 5. Exemplary Wetland Natural Community

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

| Wetlands that are identified as high quality examples of Vermont's natural community types recognized by the Natural Heritage Information Project of the Vermont Fish and |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                           |
| Wildlife Department, including rare types such as dwarf shrub bogs, rich fens, alpine                                                                                     |
| peatlands, red maple-black gum swamps and the more common types including deep                                                                                            |
| bulrush marshes, cattail marshes, northern white cedar swamps, spruce-fir-tamarack                                                                                        |
| swamps, and red maple-black ash seepage swamps are automatically significant for                                                                                          |
| this function.                                                                                                                                                            |
|                                                                                                                                                                           |

The wetland is also likely to be significant if any of the following conditions are met:

| Is an example of a wetland natural community type that has been identified and |
|--------------------------------------------------------------------------------|
| mapped by, or meets the ranking and mapping standards of, the Natural Heritage |
| Information Project of the Vermont Fish and Wildlife Department.               |

Contains ecological features that contribute to Vermont's natural heritage, including, but not limited to:

Deep peat accumulation reflecting a long history of wetland formation;

| $\square$ | Forested wetlands displaying very | old trees and | other old growth | characteristics; |
|-----------|-----------------------------------|---------------|------------------|------------------|
|           | i olooloo wolanao aloplaying vory |               | i oli ola giomin | onalaotonotioo,  |

A wetland natural community that is at the edge of the normal range for that type;

A wetland mosaic containing examples of several to many wetland community types; or

A large wetland complex with examples of several wetland community types.

#### 6. Rare, Threatened, and Endangered Species Habitat

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

Wetlands that contain one or more species on the federal or state threatened or endangered lists, as well as species that are rare in Vermont, are automatically significant for this function.

The wetland is also likely to be significant if any of the following apply:

] There is creditable documentation that the wetland provides important habitat for any species on the federal or state threatened or endangered species lists;

There is creditable documentation that threatened or endangered species have been present in past 10 years;

] There is creditable documentation that the wetland provides important habitat for any species listed as rare in Vermont (S1 or S2 ranks), state historic (SH rank), or rare to uncommon globally (G1, G2, or G3 ranks) by the Natural Heritage Information Project of the Vermont Fish and Wildlife Department;

There is creditable documentation that the wetland provides habitat for multiple uncommon species of plants or animals (S3 rank).

List name of species and ranking:

#### 7. Education and Research in Natural Sciences

Function is present and likely to be significant: Any of the following characteristics indicate the wetland provides this function.

Owned by or leased to a public entity dedicated to education or research.



History of use for education or research.

Has one or more characteristics making it valuable for education or research.

| 8. | R | ecreational Value and Economic Benefits                                                                                       |
|----|---|-------------------------------------------------------------------------------------------------------------------------------|
|    |   | nction is present and likely to be significant: Any of the following characteristics indicate wetland provides this function. |
|    |   | Used for, or contributes to, recreational activities.                                                                         |
|    |   | Provides economic benefits.                                                                                                   |
|    |   | Provides important habitat for fish or wildlife which can be fished, hunted or trapped under applicable state law.            |
|    |   | Used for harvesting of wild foods.                                                                                            |
|    |   |                                                                                                                               |

Comments:

#### 9. Open Space and Aesthetics

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

Can be readily observed by the public; and

Possesses special or unique aesthetic qualities; or

Has prominence as a distinct feature in the surrounding landscape;

Has been identified as important open space in a municipal, regional or state plan.

### 10. Erosion Control through Binding and Stabilizing the Soil

Function is present and likely to be significant: Any of the following physical and vegetative characteristics indicate the wetland provides this function.

Erosive forces such as wave or current energy are present and any of the following are present as well:

Dense, persistent vegetation along a shoreline or stream bank that reduces an adjacent erosive force.

Good interspersion of persistent emergent vegetation and water along course of water flow.

Studies show that wetlands of similar size, vegetation type, and hydrology are important for erosion control.

What type of erosive forces are present?

Lake fetch and waves

High current velocities

Water level influenced by upstream impoundment

If any of the above boxes are checked, the wetland provides this function. Complete the following to determine if the wetland provides this function above or below a moderate level.

Check box if any of the following conditions apply that may indicate the wetland provides this function at a *lower* level.

The stream is artificially channelized and/or lacks vegetation that contributes to controlling the erosive force.

Check box if any of the following conditions apply that may indicate the wetland provides this function at a *higher* level.

The stream contains high sinuosity.

Has been identified through fluvial geomorphic assessment to be important in maintaining the natural condition of the stream or river corridor.

#### NATURAL RESOURCES REPORT - NEW HAVEN OPERATIONS FACILITY

Appendix C Wetland Reporting November 14, 2019

## C.3 USACE WETLAND FUNCTION AND VALUES FORMS

|                                                 | Wet                                                   | land Function-Va                 | alue                                                            | Evaluation Form           |                                                                               |
|-------------------------------------------------|-------------------------------------------------------|----------------------------------|-----------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------|
| Total area of wetland_17,614 sq ft_Human made?  | Is wetla                                              | nd part of a wildlife corridor?  | lo                                                              | or a "habitat island"?_No | Wetland I.D. New Haven Sub: NH-008<br>Latitude 44.122563 Longitude -73.166205 |
| Adjacent land use t-line ROW, public road, A    | Prepared by: AS Date_10/11/2017                       |                                  |                                                                 |                           |                                                                               |
| Dominant wetland systems present PEM            | Wetland Impact:<br>Type_t-line veg clearing Area_100% |                                  |                                                                 |                           |                                                                               |
| Is the wetland a separate hydraulic system? No  | Evaluation based on:<br>Office X Field X              |                                  |                                                                 |                           |                                                                               |
| How many tributaries contribute to the wetland? |                                                       | Wildlife & vegetation diversity/ | Corps manual wetland delineation<br>completed? Y <sup>×</sup> N |                           |                                                                               |
| Function/Value                                  | Suitabilit<br>Y / N                                   |                                  | Princi<br>Functi                                                |                           | omments                                                                       |
| Groundwater Recharge/Discharge                  | Y                                                     | 1, 2, 9, 10                      |                                                                 | no visible inlet, cor     | nstricted outlet                                                              |
| Floodflow Alteration                            | Y                                                     | 5, 11, 15, 17                    |                                                                 |                           |                                                                               |
| Fish and Shellfish Habitat                      | Ν                                                     |                                  |                                                                 |                           |                                                                               |
| Sediment/Toxicant Retention                     | Y                                                     | 1, 2, 5, 6                       | Х                                                               |                           |                                                                               |
| Nutrient Removal                                | Y                                                     | 3, 4, 10                         |                                                                 |                           |                                                                               |
| Production Export                               | Ν                                                     |                                  |                                                                 |                           |                                                                               |
| Sediment/Shoreline Stabilization                | Ν                                                     |                                  |                                                                 |                           |                                                                               |
| ← Wildlife Habitat                              | Ν                                                     | 8                                |                                                                 |                           |                                                                               |
| <b>A</b> Recreation                             | Ν                                                     |                                  |                                                                 |                           |                                                                               |
| Educational/Scientific Value                    | Ν                                                     |                                  |                                                                 |                           |                                                                               |
| 🛨 Uniqueness/Heritage                           | Ν                                                     |                                  |                                                                 |                           |                                                                               |
| Visual Quality/Aesthetics                       | Ν                                                     |                                  |                                                                 |                           |                                                                               |
| ES Endangered Species Habitat                   | Ν                                                     |                                  |                                                                 |                           |                                                                               |
| Other                                           |                                                       |                                  |                                                                 |                           |                                                                               |

|                                                   | Wet                                                                                                         | land Function-                | /alue                                                                    | Evaluation Form           |                                 |  |  |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------|---------------------------|---------------------------------|--|--|
| Total area of wetland 28,806 sq ft Human made? No | Wetland I.D. New Haven Sub: NH-009<br>Latitude 44.121062 Longitude -73.165039                               |                               |                                                                          |                           |                                 |  |  |
| Adjacent land uset-line ROW, Substation, A        | g. field                                                                                                    | Distance to nearest r         | oadway or                                                                | other development 55 feet | Prepared by: AS Date 10/11/2017 |  |  |
| Dominant wetland systems present PEM              | Wetland Impact:<br>Type t-line veg clearing Area 25%                                                        |                               |                                                                          |                           |                                 |  |  |
| Is the wetland a separate hydraulic system? No    | a separate hydraulic system? <u>No</u> If not, where does the wetland lie in the drainage basin? <u>Mid</u> |                               |                                                                          |                           |                                 |  |  |
| How many tributaries contribute to the wetland?   |                                                                                                             | Wildlife & vegetation divers  | Office X Field X<br>Corps manual wetland delineation<br>completed? Y X N |                           |                                 |  |  |
| Function/Value                                    | Suitabilit<br>Y / N                                                                                         | y Rationale<br>(Reference #)* | Princip<br>Functi                                                        | oal<br>on(s)/Value(s)     | Comments                        |  |  |
| Groundwater Recharge/Discharge                    | Y                                                                                                           | 1, 2                          |                                                                          |                           |                                 |  |  |
| Floodflow Alteration                              | Y                                                                                                           | 5, 6, 11, 17                  |                                                                          |                           |                                 |  |  |
| -Fish and Shellfish Habitat                       | Ν                                                                                                           |                               |                                                                          |                           |                                 |  |  |
| Sediment/Toxicant Retention                       | Y                                                                                                           | 1, 2, 6                       | X                                                                        |                           |                                 |  |  |
| Nutrient Removal                                  | Y                                                                                                           | 3, 4, 10                      |                                                                          |                           |                                 |  |  |
| Production Export                                 | N                                                                                                           |                               |                                                                          |                           |                                 |  |  |
| Sediment/Shoreline Stabilization                  | N                                                                                                           |                               |                                                                          |                           |                                 |  |  |
| ← Wildlife Habitat                                | N                                                                                                           |                               |                                                                          |                           |                                 |  |  |
| <b>A</b> Recreation                               | Ν                                                                                                           |                               |                                                                          |                           |                                 |  |  |
| Educational/Scientific Value                      | N                                                                                                           |                               |                                                                          |                           |                                 |  |  |
| ★ Uniqueness/Heritage                             | N                                                                                                           |                               |                                                                          |                           |                                 |  |  |
| Visual Quality/Aesthetics                         | N                                                                                                           |                               |                                                                          |                           |                                 |  |  |
| ES Endangered Species Habitat                     | Ν                                                                                                           |                               |                                                                          |                           |                                 |  |  |
| Other                                             |                                                                                                             |                               |                                                                          |                           |                                 |  |  |

|                                                 | Wet                 | land Function-                  | value                                                    | Evaluation Form                        |                                                                                 |
|-------------------------------------------------|---------------------|---------------------------------|----------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------|
| Total area of wetland 796 sq ft Human made? No  | Is wetla            | and part of a wildlife corridor | <sub>r?</sub> No                                         | or a "habitat island"? <mark>No</mark> | Wetland I.D. New Haven Sub: NH-010<br>- Latitude 44.120350 Longitude -73.167631 |
| Adjacent land uset-line ROW, Substation, ro     | ad                  | Distance to nearest 1           | roadway or                                               | other development 200 feet             | Prepared by: AS Date 10/11/2017                                                 |
| Dominant wetland systems present_PEM            |                     | Contiguous undeve               | Wetland Impact:<br>Type_substation veg clearingArea_100% |                                        |                                                                                 |
| Is the wetland a separate hydraulic system? No  | If n                | ot, where does the wetland li   | Evaluation based on:<br>Office X Field X                 |                                        |                                                                                 |
| How many tributaries contribute to the wetland? |                     | Wildlife & vegetation divers    | Corps manual wetland delineation                         |                                        |                                                                                 |
| Function/Value                                  | Suitabilit<br>Y / N | y Rationale<br>(Reference #)*   | Princip<br>Function                                      | oal<br>on(s)/Value(s)                  | completed? Y × N<br>Comments                                                    |
| Groundwater Recharge/Discharge                  | Y                   | 1, 2                            |                                                          |                                        |                                                                                 |
|                                                 | Y                   | 5, 6, 11, 17                    |                                                          |                                        |                                                                                 |
| Fish and Shellfish Habitat                      | Ν                   |                                 |                                                          |                                        |                                                                                 |
| Sediment/Toxicant Retention                     | Y                   | 1, 2, 6                         | Х                                                        |                                        |                                                                                 |
| Nutrient Removal                                | Y                   | 3, 4, 10                        |                                                          |                                        |                                                                                 |
| Production Export                               | Ν                   |                                 |                                                          |                                        |                                                                                 |
| Sediment/Shoreline Stabilization                | Ν                   |                                 |                                                          |                                        |                                                                                 |
| 🖢 Wildlife Habitat                              | Ν                   | 8                               |                                                          |                                        |                                                                                 |
| <b>A</b> Recreation                             | Ν                   |                                 |                                                          |                                        |                                                                                 |
| Educational/Scientific Value                    | Ν                   |                                 |                                                          |                                        |                                                                                 |
| ★ Uniqueness/Heritage                           | Ν                   |                                 |                                                          |                                        |                                                                                 |
| Visual Quality/Aesthetics                       | Ν                   |                                 |                                                          |                                        |                                                                                 |
| ES Endangered Species Habitat                   | N                   |                                 |                                                          |                                        |                                                                                 |
| Other                                           |                     |                                 |                                                          |                                        |                                                                                 |

|                                                   | Wet                                                                               | land Function-Va                 | lue                                                  | Evaluation Form |                             |
|---------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------|-----------------|-----------------------------|
| Total area of wetland 11,098 sq ft Human made? No | Wetland I.D. New Haven Sub BCC: NH-201<br>Latitude 44.122563 Longitude -73.166205 |                                  |                                                      |                 |                             |
| Adjacent land use_t-line ROW, public road, Ag.    | Prepared by: EDB Date 11/1/2017                                                   |                                  |                                                      |                 |                             |
| Dominant wetland systems present_PEM              | Wetland Impact:<br>Type ag fieldArea_100%                                         |                                  |                                                      |                 |                             |
| Is the wetland a separate hydraulic system? Yes   | ainage basin?                                                                     | Evaluation based on:             |                                                      |                 |                             |
| How many tributaries contribute to the wetland?   |                                                                                   | Wildlife & vegetation diversity/ | Office X Field X<br>Corps manual wetland delineation |                 |                             |
| Function/Value                                    | Suitabilit<br>Y / N                                                               |                                  | rincij<br>uncti                                      |                 | completed? Y × N<br>omments |
| Groundwater Recharge/Discharge                    | Y                                                                                 | 1, 2                             |                                                      |                 |                             |
| Floodflow Alteration                              | Y                                                                                 | 5, 7, 9, 15                      |                                                      |                 |                             |
| Fish and Shellfish Habitat                        | Ν                                                                                 |                                  |                                                      |                 |                             |
| Sediment/Toxicant Retention                       | Y                                                                                 | 1, 2, 3, 4, 5, 6                 | Х                                                    |                 |                             |
| Nutrient Removal                                  | Y                                                                                 | 3, 4, 5, 7, 9, 10, 11            | X                                                    |                 |                             |
| Production Export                                 | Ν                                                                                 |                                  |                                                      |                 |                             |
| Sediment/Shoreline Stabilization                  | Ν                                                                                 |                                  |                                                      |                 |                             |
| 🖢 Wildlife Habitat                                | Ν                                                                                 |                                  |                                                      |                 |                             |
| A Recreation                                      | Ν                                                                                 |                                  |                                                      |                 |                             |
| Educational/Scientific Value                      | Ν                                                                                 |                                  |                                                      |                 |                             |
| ★ Uniqueness/Heritage                             | Ν                                                                                 |                                  |                                                      |                 |                             |
| Visual Quality/Aesthetics                         | Ν                                                                                 |                                  |                                                      |                 |                             |
| ES Endangered Species Habitat                     | Ν                                                                                 |                                  |                                                      |                 |                             |
| Other                                             |                                                                                   |                                  |                                                      |                 |                             |

|                                                     | Wet                                                                               | land Function-Va                  | lue                                         | Evaluation Form             |                                     |
|-----------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------|-----------------------------|-------------------------------------|
| Total area of wetland 37,530 sq ft Human made? No   | Wetland I.D. New Haven Sub BCC: NH-202<br>Latitude 44.122563 Longitude -73.166205 |                                   |                                             |                             |                                     |
| Adjacent land uset-line ROW, residential, Ag        | g. field                                                                          | Distance to nearest road          | way oi                                      | r other development 90 feet | Prepared by: EDB Date 11/1/2017     |
| Dominant wetland systems present_PEM                |                                                                                   | Contiguous undevelope             | Wetland Impact:<br>Type t-line row Area 10% |                             |                                     |
| Is the wetland a separate hydraulic system? Yes     | If n                                                                              | ot, where does the wetland lie in | Evaluation based on:<br>Office X Field X    |                             |                                     |
| How many tributaries contribute to the wetland? $0$ |                                                                                   | Wildlife & vegetation diversity/a | Corps manual wetland delineation            |                             |                                     |
| Function/Value                                      | Suitabilit<br>Y / N                                                               |                                   | rincij<br>uncti                             |                             | completed? Y <u>×</u> N<br>Comments |
| Groundwater Recharge/Discharge                      | Y                                                                                 | 1, 2, 15                          | X                                           |                             |                                     |
| Floodflow Alteration                                | Y                                                                                 | 2, 3, 5, 6, 7, 8, 9, 18           | X                                           |                             |                                     |
| -Fish and Shellfish Habitat                         | Ν                                                                                 |                                   |                                             |                             |                                     |
| Sediment/Toxicant Retention                         | Y                                                                                 | 1, 2, 3, 4, 5, 6                  |                                             |                             |                                     |
| Nutrient Removal                                    | Y                                                                                 | 3, 4, 5, 6, 7, 8, 9, 10, 11       | X                                           |                             |                                     |
| Production Export                                   | Ν                                                                                 |                                   |                                             |                             |                                     |
| Sediment/Shoreline Stabilization                    | Ν                                                                                 |                                   |                                             |                             |                                     |
| ← Wildlife Habitat                                  | Y                                                                                 | 5                                 |                                             |                             |                                     |
| <b>A</b> Recreation                                 | Ν                                                                                 |                                   |                                             |                             |                                     |
| Educational/Scientific Value                        | Ν                                                                                 |                                   |                                             |                             |                                     |
| ★ Uniqueness/Heritage                               | Ν                                                                                 |                                   |                                             |                             |                                     |
| Visual Quality/Aesthetics                           | Ν                                                                                 |                                   |                                             |                             |                                     |
| ES Endangered Species Habitat                       | Ν                                                                                 |                                   |                                             |                             |                                     |
| Other                                               |                                                                                   |                                   |                                             |                             |                                     |

|                                                   | Wet                                                                               | land Function-Va                  | lue                                                      | Evaluation Form             |                                     |
|---------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------|-----------------------------|-------------------------------------|
| Total area of wetland 20,344 sq ft Human made? No | Wetland I.D. New Haven Sub BCC: NH-203<br>Latitude 44.121272 Longitude -73.162599 |                                   |                                                          |                             |                                     |
| Adjacent land use_t-line ROW, substation, Ag      | g. field                                                                          | Distance to nearest road          | way o                                                    | r other development 65 feet | Prepared by: EDB Date 11/1/2017     |
| Dominant wetland systems present PEM              |                                                                                   | Contiguous undevelope             | Wetland Impact:<br>Type_t-line row/mowed fieldArea_90%   |                             |                                     |
| Is the wetland a separate hydraulic system? No    | If n                                                                              | ot, where does the wetland lie in | Evaluation based on:                                     |                             |                                     |
| How many tributaries contribute to the wetland?   |                                                                                   | Wildlife & vegetation diversity/  | Office $X$ Field $X$<br>Corps manual wetland delineation |                             |                                     |
| Function/Value                                    | Suitabilit<br>Y / N                                                               |                                   | rinci                                                    |                             | completed? Y <u>×</u> N<br>Comments |
| Groundwater Recharge/Discharge                    | Y                                                                                 | 1, 2, 10, 15                      |                                                          |                             |                                     |
|                                                   | Y                                                                                 | 2, 3, 5, 6, 8, 9, 13, 18          | 3                                                        |                             |                                     |
| Fish and Shellfish Habitat                        | Ν                                                                                 |                                   |                                                          |                             |                                     |
| Kediment/Toxicant Retention                       | Y                                                                                 | 1, 2, 4, 6                        | Х                                                        |                             |                                     |
| Nutrient Removal                                  | Y                                                                                 | 3, 4, 7, 8, 9, 10, 11             | X                                                        |                             |                                     |
| Production Export                                 | Ν                                                                                 |                                   |                                                          |                             |                                     |
| Sediment/Shoreline Stabilization                  | Ν                                                                                 |                                   |                                                          |                             |                                     |
| 🖢 Wildlife Habitat                                | Ν                                                                                 |                                   |                                                          |                             |                                     |
| <b>A</b> Recreation                               | Ν                                                                                 |                                   |                                                          |                             |                                     |
| Educational/Scientific Value                      | Ν                                                                                 |                                   |                                                          |                             |                                     |
| ★ Uniqueness/Heritage                             | N                                                                                 |                                   |                                                          |                             |                                     |
| Visual Quality/Aesthetics                         | Ν                                                                                 |                                   |                                                          |                             |                                     |
| ES Endangered Species Habitat                     | Ν                                                                                 |                                   |                                                          |                             |                                     |
| Other                                             |                                                                                   |                                   |                                                          |                             |                                     |

#### NATURAL RESOURCES REPORT - NEW HAVEN OPERATIONS FACILITY

Appendix C Wetland Reporting November 14, 2019

# C.4 USACE WETLAND DETERMINATION FORMS



#### WETLAND DETERMINATION DATA FORM Northeast and Northcentral Region

| Project/Site:                                                                                                        |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                                                                        |                                                                                                                                                              |                                                                                                       | Stantec Project #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 195601363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                    | Date:                                                                                                                                                                                                                                                                                   | 07/40/40                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Applicant:                                                                                                           | VELCO BUC                                                                                                                                                                                                                                                                                                                     | C New Haven                                                                                                                                                                                                                                                                                                    |                                                                                                  |                                                                                        |                                                                                                                                                              |                                                                                                       | Stantec Project #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19001303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                    | County:                                                                                                                                                                                                                                                                                 | 07/18/19<br>Addison                                                                                                                                    |
| Investigator #1:                                                                                                     |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                                                                        |                                                                                                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    | State:                                                                                                                                                                                                                                                                                  | VT                                                                                                                                                     |
| Soil Unit:                                                                                                           |                                                                                                                                                                                                                                                                                                                               | /ergennes clay, 2-6% NWI/WWI Classification:                                                                                                                                                                                                                                                                   |                                                                                                  |                                                                                        |                                                                                                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    | Wetland ID:                                                                                                                                                                                                                                                                             | BUCC 01                                                                                                                                                |
| Landform:                                                                                                            | Rise                                                                                                                                                                                                                                                                                                                          | olay, 2-070                                                                                                                                                                                                                                                                                                    |                                                                                                  | Loc                                                                                    | al Relief:                                                                                                                                                   |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | upi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                    | Sample Point:                                                                                                                                                                                                                                                                           | DP UPL 01                                                                                                                                              |
| Slope (%):                                                                                                           | 0-5                                                                                                                                                                                                                                                                                                                           | Latitude:                                                                                                                                                                                                                                                                                                      | 44.120269                                                                                        | LOC                                                                                    | ongitude:                                                                                                                                                    |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Datum:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NAD83                                                                                                                                                                                              | Community ID:                                                                                                                                                                                                                                                                           | UPL                                                                                                                                                    |
|                                                                                                                      |                                                                                                                                                                                                                                                                                                                               | ditions on the site typ                                                                                                                                                                                                                                                                                        |                                                                                                  | time of                                                                                | 0                                                                                                                                                            |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ⊻ Yes □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No                                                                                                                                                                                                 | Community 12.                                                                                                                                                                                                                                                                           | 012                                                                                                                                                    |
| Are Vegetation                                                                                                       |                                                                                                                                                                                                                                                                                                                               | or Hydrology 🗉 sign                                                                                                                                                                                                                                                                                            | nificantly dis                                                                                   | sturbed?                                                                               |                                                                                                                                                              |                                                                                                       | Are normal circumsta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                         |                                                                                                                                                        |
| Are Vegetation                                                                                                       | □ . Soil □ .                                                                                                                                                                                                                                                                                                                  | or Hydrology □ natu                                                                                                                                                                                                                                                                                            | urally proble                                                                                    | ematic?                                                                                |                                                                                                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | □ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                         |                                                                                                                                                        |
| SUMMARY OF                                                                                                           | FINDINGS                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                                                                        |                                                                                                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                       |                                                                                                                                                        |
| Hydrophytic Ve                                                                                                       | detation Pre                                                                                                                                                                                                                                                                                                                  | sent?                                                                                                                                                                                                                                                                                                          |                                                                                                  |                                                                                        | s ⊡ No                                                                                                                                                       |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hydric Soils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Present?                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                         | Yes No                                                                                                                                                 |
| Wetland Hydrol                                                                                                       |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                |                                                                                                  | Yes                                                                                    | No No                                                                                                                                                        |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    | Within A Wetland                                                                                                                                                                                                                                                                        |                                                                                                                                                        |
| Remarks:                                                                                                             | mowed ag                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                                                                        |                                                                                                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                         |                                                                                                                                                        |
|                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                                                                        |                                                                                                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                         |                                                                                                                                                        |
| HYDROLOGY                                                                                                            |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                                                                        |                                                                                                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                         |                                                                                                                                                        |
|                                                                                                                      | ology India                                                                                                                                                                                                                                                                                                                   | atore (Chack hara if                                                                                                                                                                                                                                                                                           | indicatora                                                                                       | ara nat r                                                                              | procont                                                                                                                                                      | )¢                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                         |                                                                                                                                                        |
| Primary                                                                                                              |                                                                                                                                                                                                                                                                                                                               | ators (Check here if                                                                                                                                                                                                                                                                                           | Indicators                                                                                       | are not p                                                                              | Jieseni                                                                                                                                                      | Ju                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Secondary:                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                         |                                                                                                                                                        |
|                                                                                                                      | A1 - Surface                                                                                                                                                                                                                                                                                                                  | Water                                                                                                                                                                                                                                                                                                          |                                                                                                  |                                                                                        | B9 - Wate                                                                                                                                                    | er-Stained                                                                                            | Leaves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    | B6 - Surface Soil                                                                                                                                                                                                                                                                       | Cracks                                                                                                                                                 |
|                                                                                                                      | A2 - High Wa                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                                                                        |                                                                                                                                                              | iatic Fauna                                                                                           | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    | B10 - Drainage Pa                                                                                                                                                                                                                                                                       |                                                                                                                                                        |
|                                                                                                                      | A3 - Saturati                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                                                                        |                                                                                                                                                              | I Deposits                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    | B16 - Moss Trim I                                                                                                                                                                                                                                                                       |                                                                                                                                                        |
|                                                                                                                      | B1 - Water M<br>B2 - Sedime                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                                                                        |                                                                                                                                                              | ogen Sulfic                                                                                           | spheres on Living Roots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    | C2 - Dry-Season V<br>C8 - Crayfish Burr                                                                                                                                                                                                                                                 |                                                                                                                                                        |
|                                                                                                                      | B3 - Drift De                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                                                                        |                                                                                                                                                              |                                                                                                       | duced Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                         | sible on Aerial Imagery                                                                                                                                |
|                                                                                                                      | B4 - Algal Ma                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                                                                        |                                                                                                                                                              |                                                                                                       | duction in Tilled Soils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    | D1 - Stunted or St                                                                                                                                                                                                                                                                      |                                                                                                                                                        |
|                                                                                                                      | B5 - Iron Dep                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                                                                        |                                                                                                                                                              | Muck Surf                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    | D2 - Geomorphic                                                                                                                                                                                                                                                                         |                                                                                                                                                        |
|                                                                                                                      |                                                                                                                                                                                                                                                                                                                               | on Visible on Aerial Ima<br>v Vegetated Concave S                                                                                                                                                                                                                                                              |                                                                                                  | 8                                                                                      | Other (Ex                                                                                                                                                    | plain in Re                                                                                           | marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    | D3 - Shallow Aqui                                                                                                                                                                                                                                                                       |                                                                                                                                                        |
|                                                                                                                      | ьо - Sparser                                                                                                                                                                                                                                                                                                                  | y vegetated Concave S                                                                                                                                                                                                                                                                                          | unace                                                                                            |                                                                                        |                                                                                                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    | D4 - Microtopogra<br>D5 - FAC-Neutral                                                                                                                                                                                                                                                   |                                                                                                                                                        |
| Field Observat                                                                                                       | lione                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                                                                        |                                                                                                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                         |                                                                                                                                                        |
| Surface Water                                                                                                        |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                | D (1                                                                                             |                                                                                        | (in )                                                                                                                                                        |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                         |                                                                                                                                                        |
|                                                                                                                      |                                                                                                                                                                                                                                                                                                                               | □ Yes ☑ No                                                                                                                                                                                                                                                                                                     | Depth:                                                                                           |                                                                                        | (in.)                                                                                                                                                        |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Wetland Hyd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | drology Pr                                                                                                                                                                                         | esent?                                                                                                                                                                                                                                                                                  | Yes 🛛 No                                                                                                                                               |
| Water Table Pr<br>Saturation Pres                                                                                    |                                                                                                                                                                                                                                                                                                                               | □ Yes ☑ No                                                                                                                                                                                                                                                                                                     | Depth:                                                                                           |                                                                                        | (in.)                                                                                                                                                        |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                         |                                                                                                                                                        |
| Saturation Pres                                                                                                      | entr                                                                                                                                                                                                                                                                                                                          | 🗆 Yes 🗵 No                                                                                                                                                                                                                                                                                                     | Depth:                                                                                           |                                                                                        | (in.)                                                                                                                                                        |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                         |                                                                                                                                                        |
| Describe Record                                                                                                      | led Data (str                                                                                                                                                                                                                                                                                                                 | eam dauge monitorin                                                                                                                                                                                                                                                                                            | na well aeria                                                                                    | al nhotos                                                                              | nrevious                                                                                                                                                     | inspection                                                                                            | ns) if available.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                         |                                                                                                                                                        |
|                                                                                                                      | ,                                                                                                                                                                                                                                                                                                                             | cam gauge, montorn                                                                                                                                                                                                                                                                                             | ig won, aone                                                                                     | ai pilotoo                                                                             | , proviouo                                                                                                                                                   | inspection                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19/73                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                         |                                                                                                                                                        |
| Remarks:                                                                                                             |                                                                                                                                                                                                                                                                                                                               | cam gauge, monitorin                                                                                                                                                                                                                                                                                           | ig won, done                                                                                     |                                                                                        | , proviouo                                                                                                                                                   | Inspection                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                         |                                                                                                                                                        |
|                                                                                                                      | ×.                                                                                                                                                                                                                                                                                                                            | cam gauge, monitorin                                                                                                                                                                                                                                                                                           | ig won, done                                                                                     |                                                                                        | , providuo                                                                                                                                                   | mopeeuo                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                         |                                                                                                                                                        |
| SOILS                                                                                                                | X                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                                                                        | , providuo                                                                                                                                                   | ·                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                         |                                                                                                                                                        |
| SOILS<br>Map Unit Name                                                                                               |                                                                                                                                                                                                                                                                                                                               | Vergennes clay, 2-6                                                                                                                                                                                                                                                                                            | 5%                                                                                               |                                                                                        | , proviouo                                                                                                                                                   | ·                                                                                                     | eries Drainage Class:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mod well dra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                         |                                                                                                                                                        |
| SOILS<br>Map Unit Name<br>Taxonomy (Sub                                                                              | ogroup):                                                                                                                                                                                                                                                                                                                      | Vergennes clay, 2-6<br>mesic glossaquic ha                                                                                                                                                                                                                                                                     | 5%<br>apludalf                                                                                   |                                                                                        |                                                                                                                                                              | S                                                                                                     | eries Drainage Class:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ined                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                         |                                                                                                                                                        |
| SOILS<br>Map Unit Name<br>Taxonomy (Sub<br>Profile Descrip                                                           | ogroup):<br>otion (Describe to                                                                                                                                                                                                                                                                                                | Vergennes clay, 2-6<br>mesic glossaquic ha                                                                                                                                                                                                                                                                     | 5%<br>apludalf                                                                                   | bsence of indic                                                                        |                                                                                                                                                              | S                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ered/Coated Sand Grains;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ined                                                                                                                                                                                               | ining, M=Matrix)                                                                                                                                                                                                                                                                        | Taytura                                                                                                                                                |
| SOILS<br>Map Unit Name<br>Taxonomy (Sub<br>Profile Descrip<br>Top                                                    | bgroup):<br>otion (Describe to<br>Bottom                                                                                                                                                                                                                                                                                      | Vergennes clay, 2-6<br>mesic glossaquic ha<br>the depth needed to document the indi                                                                                                                                                                                                                            | 5%<br>apludalf<br>cator or confirm the a                                                         | bsence of indication                                                                   | ators.) (Type: C=(                                                                                                                                           | S                                                                                                     | eries Drainage Class:<br>Depletion, RM-Reduced Matrix, CS=Cove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ered/Coated Sand Grains;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ined<br>Location: PL=Pore L                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                       | Texture                                                                                                                                                |
| SOILS<br>Map Unit Name<br>Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth                                           | ogroup):<br>otion (Describe to<br>Bottom<br>Depth                                                                                                                                                                                                                                                                             | Vergennes clay, 2-6<br>mesic glossaquic ha<br>the depth needed to document the indi<br>Horizon                                                                                                                                                                                                                 | 5%<br>apludalf<br>cator or confirm the a                                                         | bsence of indica<br>Matrix<br>Moist)                                                   | ators.) (Type: C=(                                                                                                                                           | Concentration, D=                                                                                     | eries Drainage Class:<br>Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ered/Coated Sand Grains;<br>Mottles<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Location: PL=Pore L                                                                                                                                                                                | Location                                                                                                                                                                                                                                                                                | (e.g. clay, sand, loam)                                                                                                                                |
| SOILS<br>Map Unit Name<br>Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0                                      | bgroup):<br>otion (Describe to<br>Bottom<br>Depth<br>12                                                                                                                                                                                                                                                                       | Vergennes clay, 2-6<br>mesic glossaquic ha<br>the depth needed to document the indi<br>Horizon                                                                                                                                                                                                                 | 5%<br>apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y                                     | bsence of indica<br>Matrix<br>Moist)<br>4/3                                            | ators.) (Type: C=0<br>%<br>100                                                                                                                               | Concentration, D=                                                                                     | eries Drainage Class:<br>Depletion, RM-Reduced Matrix, CS-Cove<br>Color (Moist)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ered/Coated Sand Grains;<br>Mottles<br>%<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ined<br>Location: PL=Pore L<br>Type<br>                                                                                                                                                            | Location                                                                                                                                                                                                                                                                                | (e.g. clay, sand, loam)<br>clay loam                                                                                                                   |
| SOILS<br>Map Unit Name<br>Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>12                                | bgroup):<br>ption (Describe to<br>Bottom<br>Depth<br>12<br>18                                                                                                                                                                                                                                                                 | Vergennes clay, 2-6<br>mesic glossaquic ha<br>the depth needed to document the indi<br>Horizon<br>1<br>2                                                                                                                                                                                                       | 5%<br>apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y                             | bsence of indic<br>Matrix<br>Moist)<br>4/3<br>4/2                                      | ators.) (Type: C=0<br>%<br>100<br>95                                                                                                                         | Concentration, D=                                                                                     | eries Drainage Class:<br>Depletion, RM-Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ered/Coated Sand Grains;<br>Mottles<br>%<br><br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ined<br>Location: PL=Pore L<br>Type<br><br>C                                                                                                                                                       | Location<br><br>M                                                                                                                                                                                                                                                                       | (e.g. clay, sand, loam)<br>clay loam<br>clay                                                                                                           |
| SOILS<br>Map Unit Name<br>Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>12<br>                            | bgroup):<br>otion (Describe to<br>Bottom<br>Depth<br>12<br>18<br>                                                                                                                                                                                                                                                             | Vergennes clay, 2-6<br>mesic glossaquic ha<br>the depth needed to document the indi<br>Horizon<br>1<br>2<br>                                                                                                                                                                                                   | 5%<br>apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br>                         | bsence of indic.<br>Matrix<br>Moist)<br>4/3<br>4/2<br>                                 | ators.) (Type: C=0<br>%<br>100<br>95<br>                                                                                                                     | Concentration, D=<br><br>7.5YR<br>                                                                    | eries Drainage Class:<br>Depletion, RM-Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ered/Coated Sand Grains;<br>Mottles<br>%<br><br>5<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ined<br>Location: PL=Pore L<br>Type<br><br>C<br>                                                                                                                                                   | Location<br><br>M<br>                                                                                                                                                                                                                                                                   | (e.g. clay, sand, loam)<br>clay loam<br>clay<br>                                                                                                       |
| SOILS<br>Map Unit Name<br>Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>12<br>                            | bgroup):<br>otion (Describe to<br>Depth<br>12<br>18<br><br>                                                                                                                                                                                                                                                                   | Vergennes clay, 2-6<br>mesic glossaquic ha<br>the depth needed to document the indi<br>Horizon<br>1<br>2<br>                                                                                                                                                                                                   | 5%<br>apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br>                         | bsence of indic:<br>Matrix<br>Moist)<br>4/3<br>4/2<br><br>                             | ators.) (Type: C=(<br>%<br>100<br>95<br>                                                                                                                     | S<br>Concentration, D=<br><br>7.5YR<br>                                                               | eries Drainage Class:<br>Depletion, RM-Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mottles<br>%<br><br>5<br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ined<br>Location: PL=Pore L<br>Type<br><br>C<br><br>                                                                                                                                               | Location<br><br>M<br><br>                                                                                                                                                                                                                                                               | (e.g. clay, sand, loam)<br>clay loam<br>clay<br><br>                                                                                                   |
| SOILS<br>Map Unit Name<br>Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>12<br><br><br>                    | pgroup):<br>otion (Describe to<br>Bottom<br>Depth<br>12<br>18<br><br><br>                                                                                                                                                                                                                                                     | Vergennes clay, 2-6<br>mesic glossaquic ha<br>the depth needed to document the indi<br>Horizon<br>1<br>2<br><br>                                                                                                                                                                                               | 5%<br>apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br>                     | bsence of indic.<br>Matrix<br>Moist)<br>4/3<br>4/2<br><br>                             | ators.) (Type: C=0<br>%<br>100<br>95<br><br>                                                                                                                 | S<br>Concentration, D=<br><br>7.5YR<br><br>                                                           | eries Drainage Class:<br>Depletion, RM-Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mottles<br>%<br><br>5<br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ined<br>Location: PL=Pore L<br>Type<br><br>C<br><br>                                                                                                                                               | Location<br><br>M<br><br>                                                                                                                                                                                                                                                               | (e.g. clay, sand, loam)<br>clay loam<br>clay<br><br><br>                                                                                               |
| SOILS<br>Map Unit Name<br>Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>12<br><br><br><br>                | bgroup):<br>btion (Describe to<br>Bottom<br>Depth<br>12<br>18<br><br><br><br>                                                                                                                                                                                                                                                 | Vergennes clay, 2-6<br>mesic glossaquic ha<br>the depth needed to document the indi<br>Horizon<br>1<br>2<br><br><br>                                                                                                                                                                                           | 5%<br>apludalf<br>cator or confirm the a<br>Color (I<br>2.5Y<br><br><br><br>                     | bsence of indic.<br>Matrix<br>Moist)<br>4/3<br>4/2<br><br><br>                         | ators.) (Type: C=0<br>%<br>100<br>95<br><br><br>                                                                                                             | S<br>Concentration, D=<br><br>7.5YR<br><br>                                                           | eries Drainage Class:<br>Depletion, RM-Reduced Matrix, CS-Cove<br>Color (Moist)<br><br>4/6<br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mottles<br>%<br><br>5<br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ined<br>Location: PL=Pore L<br>Type<br><br>C<br><br><br>                                                                                                                                           | Location<br><br>M<br><br><br><br>                                                                                                                                                                                                                                                       | (e.g. clay, sand, loam)<br>clay loam<br>clay<br><br><br><br>                                                                                           |
| SOILS<br>Map Unit Name<br>Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>12<br><br><br><br><br>            | pgroup):<br>otion (Describe to<br>Bottom<br>Depth<br>12<br>18<br><br><br>                                                                                                                                                                                                                                                     | Vergennes clay, 2-6<br>mesic glossaquic ha<br>the depth needed to document the indi<br>Horizon<br>1<br>2<br><br>                                                                                                                                                                                               | 5%<br>apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br>                     | bsence of indic.<br>Matrix<br>Moist)<br>4/3<br>4/2<br><br>                             | ators.) (Type: C=0<br>%<br>100<br>95<br><br>                                                                                                                 | S<br>Concentration, D=<br><br>7.5YR<br><br>                                                           | eries Drainage Class:<br>Depletion, RM-Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mottles<br>%<br><br>5<br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ined<br>Location: PL=Pore L<br>Type<br><br>C<br><br>                                                                                                                                               | Location<br><br>M<br><br>                                                                                                                                                                                                                                                               | (e.g. clay, sand, loam)<br>clay loam<br>clay<br><br><br>                                                                                               |
| SOILS<br>Map Unit Name<br>Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>12<br><br><br><br><br><br>        | ogroup):<br>tion (Describe to<br>Bottom<br>Depth<br>12<br>18<br><br><br><br><br><br>                                                                                                                                                                                                                                          | Vergennes clay, 2-6<br>mesic glossaquic ha<br>the depth needed to document the indi<br>Horizon<br>1<br>2<br><br><br><br><br>                                                                                                                                                                                   | 5%<br>apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br><br> | bsence of indic<br>Matrix<br>Moist)<br>4/3<br><br><br><br><br>                         | ators.) (Type: C=0<br>%<br>100<br>95<br><br><br><br><br><br>                                                                                                 | S<br>Concentration, D=<br>7.5YR<br><br><br><br>                                                       | eries Drainage Class:<br>Depletion, RM-Reduced Matrix, CS-Cove<br>Color (Moist)<br><br>4/6<br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mottles<br>%<br><br>5<br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ined<br>Location: PL=Pore L<br>Type<br><br>C<br><br><br><br><br><br>                                                                                                                               | Location<br><br>M<br><br><br><br><br><br>                                                                                                                                                                                                                                               | (e.g. clay, sand, loam)<br>clay loam<br>clay<br><br><br><br>                                                                                           |
| SOILS<br>Map Unit Name<br>Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>12<br><br><br><br><br>NRCS Hydric | ogroup):<br>tion (Describe to<br>Depth<br>12<br>18<br><br><br><br>Soil Field Ir                                                                                                                                                                                                                                               | Vergennes clay, 2-6<br>mesic glossaquic ha<br>the depth needed to document the indi<br>Horizon<br>1<br>2<br><br><br>                                                                                                                                                                                           | 5%<br>apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br><br> | beence of indic<br>Matrix<br>Moist)<br>4/3<br>4/2<br><br><br><br><br><br><br>ors are r | ators.) (Type: C=0<br>%<br>100<br>95<br><br><br><br><br><br><br><br><br>                                                                                     | Soncentration, D-<br><br>7.5YR<br><br><br><br><br><br>tt };                                           | eries Drainage Class:<br>Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mottles<br>%<br><br>5<br><br><br><br><br><br><br><u></u><br><u></u><br><u></u><br><u>Indicator</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ined<br>Location: PL=Pore L<br>Type<br><br>C<br><br><br><br><br><br>                                                                                                                               | Location<br><br>M<br><br><br><br><br><br>matic Soils <sup>1</sup>                                                                                                                                                                                                                       | (e.g. clay, sand, loam)<br>clay loam<br>clay<br><br><br><br><br><br><br><br>-                                                                          |
| SOILS<br>Map Unit Name<br>Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>12<br><br><br><br><br><br>        | ogroup):<br>tion (Describe to<br>Bottom<br>Depth<br>12<br>18<br><br><br><br><br><br>                                                                                                                                                                                                                                          | Vergennes clay, 2-6<br>mesic glossaquic ha<br>the depth needed to document the indi<br>Horizon<br>1<br>2<br><br><br><br><br><br><br><br>ndicators (check her                                                                                                                                                   | 5%<br>apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br><br> | bsence of indic<br>Matrix<br>Moist)<br>4/3<br><br><br><br><br>                         | ators.) (Type: C=0<br>%<br>100<br>95<br><br><br><br><br><br><br><br><br><br>tot preser<br>S8 - Polyn                                                         | Soncentration, D-<br><br>7.5YR<br><br><br><br><br><br><br><br><br><br><br><br>t<br>t<br>produce Belov | eries Drainage Class:<br>Depletion, RM-Reduced Matrix, CS-Cove<br>Color (Moist)<br><br>4/6<br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mottles<br>%<br><br>5<br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ined<br>Location: PL=Pore L<br>Type<br><br>C<br><br><br><br><br>s for Proble<br>A10 - 2 cm l                                                                                                       | Location<br><br>M<br><br><br><br><br><br>                                                                                                                                                                                                                                               | (e.g. clay, sand, loam)<br>clay loam<br>clay<br><br><br><br><br><br><br><br>-                                                                          |
| SOILS<br>Map Unit Name<br>Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>12<br><br><br><br>NRCS Hydric     | bgroup):<br>tion (Describe to<br>Depth<br>12<br>18<br><br><br><br><br>Soil Field Ir<br>A1- Histosol                                                                                                                                                                                                                           | Vergennes clay, 2-6<br>mesic glossaquic ha<br>the depth needed to document the indi<br>Horizon<br>1<br>2<br><br><br><br><br><br><br><br><br><br><br><br>dicators (check hell                                                                                                                                   | 5%<br>apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br><br> | beence of Indica<br>Matrix<br>Moist)<br>4/3<br>4/2<br><br><br><br><br><br>ors are r    | ators.) (Type: C=(<br>%<br>100<br>95<br><br><br><br><br><br><br>S8 - Polyn<br>S9 - Thin                                                                      | Soncentration, D=                                                                                     | eries Drainage Class:<br>Depletion, RM-Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br><br><br><br><br>v Surface (LRR R, MLRA 149B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mottles<br>%<br><br>5<br><br><br><br><br><u></u><br><u></u><br><u></u><br><u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ined<br>Location: PL=Pore L<br>Type<br><br>C<br><br><br><br><br>s for Proble<br>A10 - 2 cm I<br>A16 - Coast                                                                                        | Location<br><br>M<br><br><br><br><br>matic Soils <sup>1</sup><br>Muck (LRR K, L, MLRA 1                                                                                                                                                                                                 | (e.g. clay, sand, loam)<br>clay loam<br>clay<br><br><br><br><br><br>498)<br>K, L, R)                                                                   |
| SOILS<br>Map Unit Name<br>Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>12<br><br><br><br>NRCS Hydric     | bgroup):<br>tion (Describe to<br>Depth<br>12<br>18<br><br><br><br>Soil Field Ir<br>A1- Histosol<br>A2 - Histo E<br>A3 - Black H<br>A4 - Hydroge                                                                                                                                                                               | Vergennes clay, 2-6<br>mesic glossaquic ha<br>the depth needed to document the indi<br>Horizon<br>1<br>2<br><br><br><br><br><br><br>ndicators (check her<br>pipedon<br>istic<br>en Sulfide                                                                                                                     | 5%<br>apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br><br> | besence of indic<br>Matrix<br>Moist)<br>4/3<br>4/2<br><br><br><br>ors are r<br><br>    | ators.) (Type: C=0<br>%<br>100<br>95<br><br><br><br><br><br>S8 - Polyn<br>S9 - Thin<br>F1 - Loan<br>F2 - Loan                                                | Sancentration, D-<br><br>7.5YR<br><br><br><br><br><br>nt<br>park Surfa<br>y Mucky M<br>y Gleyed N     | eries Drainage Class:<br>Depletion, RM=Reduced Matrix, CS=Cover<br>Color (Moist)<br><br>4/6<br><br><br><br><br>v Surface (LRR R, MLRA 149B)<br>Interal (LRR R, L)<br>Vatrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mottles<br>%<br><br>5<br><br><br><br><br><br><u></u><br><u></u><br><u></u><br><u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ined<br>Location: PL=Pore L<br>Type<br><br>C<br><br><br><br><br>s for Proble<br>A10 - 2 cm I<br>A10 - Coast<br>S3 - 5 cm Mt<br>S3 - 5 cm Mt                                                        | Location<br><br>M<br><br><br><br><br><br>matic Soils <sup>1</sup><br>Muck (LRR K, L, MLRA 1-<br>Prairie Redox (LRR<br>Location (LRR K, L, M)<br>Urface (LRR K, L, M)                                                                                                                    | (e.g. clay, sand, loam)<br>clay loam<br>clay<br><br><br><br><br><br><br><br>-                                                                          |
| SOILS<br>Map Unit Name<br>Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>12<br><br><br><br>NRCS Hydric     | bgroup):<br>tion (Describe to<br>Depth<br>12<br>18<br><br><br><br>Soil Field Ir<br>A1- Histosol<br>A2 - Histic E;<br>A3 - Black H<br>A4 - Hydrogg<br>A5 - Stratifier                                                                                                                                                          | Vergennes clay, 2-6<br>mesic glossaquic ha<br>the depth needed to document the indi<br>Horizon<br>1<br>2<br><br><br><br><br>ndicators (check her<br>pipedon<br>istic<br>en Sulfide<br>d Layers                                                                                                                 | 5%<br>apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br><br> | beence of Indic<br>Matrix<br>Woist)<br>4/3<br>4/2<br><br><br><br><br><br>ors are r     | ators.) (Type: C=0<br>%<br>100<br>95<br><br><br><br><br><br><br><br><br><br><br>S8 - Polyn<br>S9 - Thin<br>F1 - Loan<br>F1 - Loan<br>F2 - Loan<br>F3 - Deple | S<br>Concentration, D-<br><br>7.5YR<br><br><br><br><br><br><br><br><br><br><br><br><br>               | eries Drainage Class:<br>Depletion, RM-Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br><br><br>v Surface (LRR R, MLRA 1498)<br>(Ce (LRR R, MLRA 1498)<br>(Ineral (LRR K, L)<br>Watrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mottles<br>%<br><br>5<br><br><br><br><br><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u> | ined<br>Location: PL=Pore L<br>Type<br><br>C<br><br><br><br><br><br>s for Proble<br>A10 - 2 cm I<br>A16 - Coast<br>S3 - 5cm Mt<br>S7 - Dark S<br>S8 - Polyval                                      | Location<br><br>M<br><br><br><br>matic Soils <sup>1</sup><br>Muck (LRR K, L, MLRA 1-<br>Prairie Redox (LRR<br>Lcky Peat of Peat (I<br>Urface (LRR K, L, M)<br>ue Below Surface (                                                                                                        | (e.g. clay, sand, loam)<br>clay loam<br>clay<br><br><br><br><br><br><br><br>-                                                                          |
| SOILS<br>Map Unit Name<br>Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>12<br><br><br><br>NRCS Hydric     | bgroup):<br>tion (Describe to<br>Depth<br>12<br>18<br><br><br><br>Soil Field Ir<br>A1- Histosol<br>A2 - Histic E<br>A3- Black H<br>A4 - Hydroge<br>A5 - Stratifie<br>A11 - Deplet                                                                                                                                             | Vergennes clay, 2-6<br>mesic glossaquic h<br>Horizon<br>1<br>2<br><br><br><br><br>ndicators (check her<br>pipedon<br>istic<br>en Sulfide<br>d Layers<br>ed Below Dark Surface                                                                                                                                  | 5%<br>apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br><br> | bisence of Indice<br>Matrix<br>Moist)<br>4/3<br>4/2<br><br><br><br>ors are r           | ators.) (Type: C=(<br>%<br>100<br>95<br><br><br><br><br><br><br>S8 - Polyn<br>S9 - Thin<br>F1 - Loan<br>F2 - Loan<br>F3 - Deply<br>F6 - Redc                 | Soncentration, D=<br>7.5YR<br><br><br><br><br><br><br><br><br><br>-                                   | eries Drainage Class:<br>Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br><br><br>v Surface (LRR R, MLRA 149B)<br>ICE (LRR R, MLRA 149B)<br>Ineral (LRR K, L)<br>Matrix<br>face                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mottles<br>%<br><br>5<br><br><br><br><br><br><u></u><br><u></u><br><u></u><br><u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ined<br>Location: PL=Pore L<br>Type<br><br>C<br><br><br><br><br><br><br><br>                                                                                                                       | Location<br><br>M<br><br><br><br><br>matic Soils <sup>1</sup><br>Muck (LRR K, L, M)<br>Prairie Redox (LRR<br>LrKy Peat of Peat (I<br>Urface (LRR K, L, M)<br>urface (LRR K, L, M)<br>urface (LRR K, L, M)                                                                               | (e.g. clay, sand, loam)<br>clay loam<br>clay<br><br><br><br><br><br><br>498)<br>K, L, R)<br>LRR K, L, R)                                               |
| SOILS<br>Map Unit Name<br>Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>12<br><br><br><br>NRCS Hydric     | ogroup):           tion         Describe to           Bottom         Depth           12         18                                                                                                                                   A1-                                                                                      | Vergennes clay, 2-6<br>mesic glossaquic ha<br>the depth needed to document the indi<br>Horizon<br>1<br>2<br><br><br><br>ndicators (check her<br>pipedon<br>istic<br>an Sulfide<br>d Layers<br>ed Below Dark Surface<br>Dark Surface                                                                            | 5%<br>apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br><br> | beence of Indic<br>Matrix<br>Woist)<br>4/3<br>4/2<br><br><br><br><br><br>ors are r     | ators.) (Type: C=0<br>% 100 95                                                                                                                               | S<br>Concentration, D=<br>7.5YR<br><br><br><br><br><br><br><br><br><br><br><br><br>                   | eries Drainage Class:<br>Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br><br>v Surface (LRR R, MLRA 1498)<br>(CP (LRR R, MLRA 1 | Mottles<br>%<br><br>5<br><br><br><br><br><u></u><br><u></u><br><u>Indicator</u><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ined<br>Location: PL=Pore L<br>Type<br>                                                                                                                                                            | Location M                                                                                                                                                                                                                                                                              | (e.g. clay, sand, loam)<br>clay loam<br>clay<br><br><br><br><br><br><br>(IRR K, L, R)<br>(LRR K, L, R)                                                 |
| SOILS<br>Map Unit Name<br>Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>12<br><br><br><br>NRCS Hydric     | bgroup):<br>tion (Describe to<br>Depth<br>12<br>18<br><br><br><br>Soil Field Ir<br>A1- Histosol<br>A2 - Histic E<br>A3- Black H<br>A4 - Hydroge<br>A5 - Stratifie<br>A11 - Deplet                                                                                                                                             | Vergennes clay, 2-6<br>mesic glossaquic ha<br>the depth needed to document the indi<br>Horizon<br>1<br>2<br><br><br><br><br><br>ndicators (check her<br>pipedon<br>istic<br>en Sulfide<br>d Layers<br>ed Below Dark Surface<br>Dark Surface<br>Auck Mineral                                                    | 5%<br>apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br><br> | beence of indic.<br>Matrix<br>4/3<br>4/2<br><br><br><br>ors are r                      | ators.) (Type: C=0<br>% 100 95                                                                                                                               | Soncentration, D=<br>7.5YR<br><br><br><br><br><br><br><br><br><br>-                                   | eries Drainage Class:<br>Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br><br>v Surface (LRR R, MLRA 1498)<br>(CP (LRR R, MLRA 1 | Mottles<br>%<br><br>5<br><br><br><br><br><br><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u>-</u>       | ined<br>Type<br><br>C<br><br><br><br><br>s for Proble<br>A10 - 2 cm I<br>A16 - Coast<br>S3 - 5cm Mi<br>S7 - Dark Si<br>S8 - Polyval<br>S9 - Thin Da<br>S9 - Thin Da<br>F12 - Iron-M<br>F19 - Piedm | Location<br><br>M<br><br><br><br><br>matic Soils <sup>1</sup><br>Muck (LRR K, L, M)<br>Prairie Redox (LRR<br>LrKy Peat of Peat (I<br>Urface (LRR K, L, M)<br>urface (LRR K, L, M)<br>urface (LRR K, L, M)                                                                               | (e.g. clay, sand, loam)<br>clay loam<br>clay<br><br><br><br><br><br><br>49B)<br>K, L, R)<br>LRR K, L, R)<br>(LRR K, L, R)<br>S (MLRA 149B)             |
| SOILS<br>Map Unit Name<br>Taxonomy (Sub<br>Profile Descrip<br>Depth<br>0<br>12<br><br><br>NRCS Hydric<br>NRCS Hydric | ogroup):           tion (Describe to           Bottom           Depth           12           18                                                                                                                                               A1- Hydroge           <                                                         | Vergennes clay, 2-6<br>mesic glossaquic h<br>the depth needed to document the indi<br>Horizon<br>1<br>2<br><br><br><br><br><br>ndicators (check her<br>pipedon<br>istic<br>en Sulfide<br>d Layers<br>ed Below Dark Surface<br>Dark Surface<br>Auck Mineral<br>Sleyed Matrix<br>Redox                           | 5%<br>apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br><br> | beence of indic.<br>Matrix<br>4/3<br>4/2<br><br><br><br>ors are r                      | ators.) (Type: C=0<br>% 100 95                                                                                                                               | S<br>Concentration, D=<br>7.5YR<br><br><br><br><br><br><br><br><br><br><br><br><br>                   | eries Drainage Class:<br>Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br><br>v Surface (LRR R, MLRA 1498)<br>(CP (LRR R, MLRA 1 | Mottles<br>%<br><br>5<br><br><br><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ined<br>Location: PL=Pore L<br>Type<br><br>C<br><br><br><br><br><br><br><br>                                                                                                                       | Location<br><br>M<br><br><br><br><br>matic Soils <sup>1</sup><br>Muck (LRR K, L, MIRA 1<br>Prairie Redox (LRR L, L, M)<br>urface (LRR K, L, M)<br>urface (LRR K, L, M)<br>urface (LRR K, L, M)<br>talanganese Masses<br>ont Floodplain Soil<br>Spodic (mura 144, 1-)<br>Parent Material | (e.g. clay, sand, loam)<br>clay loam<br><br><br><br><br><br><br><br>498)<br>K, L, R)<br>LRR K, L, R)<br>LRR K, L, R)<br>(LRR K, L, R)<br>S (MLRA 149B) |
| SOILS<br>Map Unit Name<br>Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>12<br><br><br><br>NRCS Hydric     | ogroup):           tion         Describe to           Bottom         Depth           12         18                                                                                                               A1-         Hydroge           A1-         Pelet           A1-         Sandy G           S6-         Strippec | Vergennes clay, 2-6<br>mesic glossaquic have a series of the depth needed to document the indi-<br>Horizon<br>1<br>2<br><br><br><br><br><br>ndicators (check here<br>pipedon<br>istic<br>en Sulfide<br>d Layers<br>ed Below Dark Surface<br>Dark Surface<br>Auck Mineral<br>Sleyed Matrix<br>Redox<br>d Matrix | 5%<br>apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br><br> | beence of indic.<br>Matrix<br>4/3<br>4/2<br><br><br><br>ors are r                      | ators.) (Type: C=0<br>% 100 95                                                                                                                               | S<br>Concentration, D=<br>7.5YR<br><br><br><br><br><br><br><br><br><br><br><br><br>                   | eries Drainage Class:<br>Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br><br>v Surface (LRR R, MLRA 1498)<br>(CP (LRR R, MLRA 1 | Mottles<br>%<br><br>5<br><br><br><br><br><br><br><u></u><br><u></u><br><u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ined<br>Type<br>                                                                                                                                                                                   | Location<br><br>M<br><br><br><br><br><br>                                                                                                                                                                                                                                               | (e.g. clay, sand, loam)<br>clay loam<br><br><br><br><br><br><br><br>498)<br>K, L, R)<br>LRR K, L, R)<br>LRR K, L, R)<br>(LRR K, L, R)<br>S (MLRA 149B) |
| SOILS<br>Map Unit Name<br>Taxonomy (Sub<br>Profile Descrip<br>Depth<br>0<br>12<br><br><br>NRCS Hydric<br>NRCS Hydric | ogroup):           tion         Describe to           Bottom         Depth           12         18                                                                                                               A1-         Hydroge           A1-         Pelet           A1-         Sandy G           S6-         Strippec | Vergennes clay, 2-6<br>mesic glossaquic h<br>the depth needed to document the indi<br>Horizon<br>1<br>2<br><br><br><br><br><br>ndicators (check her<br>pipedon<br>istic<br>en Sulfide<br>d Layers<br>ed Below Dark Surface<br>Dark Surface<br>Auck Mineral<br>Sleyed Matrix<br>Redox                           | 5%<br>apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br><br> | beence of indic.<br>Matrix<br>4/3<br>4/2<br><br><br><br>ors are r                      | ators.) (Type: C=0<br>% 100 95                                                                                                                               | S<br>Concentration, D=<br>7.5YR<br><br><br><br><br><br><br><br><br><br><br><br><br>                   | eries Drainage Class:<br>Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br><br>v Surface (LRR R, MLRA 1498)<br>(CP (LRR R, MLRA 1 | Mottles<br>%<br><br>5<br><br><br><br><br><u></u><br><u></u><br><u></u><br><u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ined<br>Type<br><br>C<br><br><br><br><br><br>                                                                                                                                                      | Location M                                                                                                                                                                                                                                                                              | (e.g. clay, sand, loam)<br>clay loam<br><br><br><br><br><br><br>49B)<br>K, L, R)<br>LRR K, L, R)<br>(LRR K, L, R)<br>S (MLRA 149B)<br>45, 149B)<br>ace |
| SOILS Map Unit Name Taxonomy (Sub Profile Descrip Top Depth 0 12 NRCS Hydric NRCS Hydric                             | ogroup):           tion         Describe to           Bottom         Depth           12         18                                                                                                               A1-         Hydroge           A1-         Pelet           A1-         Sandy G           S6-         Strippec | Vergennes clay, 2-6<br>mesic glossaquic have the depth needed to document the indi<br>Horizon<br>1<br>2<br><br><br><br><br>ndicators (check here<br>pipedon<br>istic<br>en Sulfide<br>d Layers<br>ed Below Dark Surface<br>Dark Surface<br>Auck Mineral<br>Sleyed Matrix<br>Redox<br>d Matrix                  | 5%<br>apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br><br> | beence of indic.<br>Matrix<br>4/3<br>4/2<br><br><br><br>ors are r                      | ators.) (Type: C=0<br>% 100 95                                                                                                                               | S<br>Concentration, D=<br>7.5YR<br><br><br><br><br><br><br><br><br><br><br><br><br>                   | eries Drainage Class:<br>Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br><br>v Surface (LRR R, MLRA 1498)<br>(CP (LRR R, MLRA 1 | red/Coated Sand Grains;<br>Mottles<br>%<br><br>5<br><br><br><br>Indicator<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ined<br>Type<br><br>C<br><br><br><br><br><br>                                                                                                                                                      | Location<br><br>M<br><br><br><br><br><br>                                                                                                                                                                                                                                               | (e.g. clay, sand, loam)<br>clay loam<br><br><br><br><br><br><br>49B)<br>K, L, R)<br>LRR K, L, R)<br>(LRR K, L, R)<br>S (MLRA 149B)<br>45, 149B)<br>ace |
| SOILS Map Unit Name Taxonomy (Sub Profile Descrip Top Depth 0 12 NRCS Hydric NRCS Hydric                             | ogroup):           tion         Describe to           Bottom         Depth           12         18                                                                                                               A1-         Hydroge           A1-         Pelet           A1-         Sandy G           S6-         Strippec | Vergennes clay, 2-6<br>mesic glossaquic h<br>Horizon<br>1<br>2<br><br><br><br><br><br><br><br><br><br><br><br>                                                                                                                                                                                                 | 5%<br>apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br><br> | beence of indic.<br>Matrix<br>4/3<br>4/2<br><br><br><br>ors are r                      | ators.) (Type: C=0<br>% 100 95                                                                                                                               | S<br>Concentration, D=<br>7.5YR<br><br><br><br><br><br><br><br><br><br><br><br><br>                   | eries Drainage Class:<br>Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br><br>v Surface (LRR R, MLRA 1498)<br>(CP (LRR R, MLRA 1 | red/Coated Sand Grains;<br>Mottles<br>%<br><br>5<br><br><br><br>Indicator<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ined Location: PL=Pore L Type C C C Sfor Proble A10 - 2 cm It A16 - Coast S3 - 5cm Mt S7 - Dark S1 S9 - Thin Da F12 - Iron-M F19 - Piedm TA6 - Mesic TF2 - Red P TF12 - Very Other (Expla          | Location M                                                                                                                                                                                                                                                                              | (e.g. clay, sand, loam)<br>clay loam<br><br><br><br><br><br><br>49B)<br>K, L, R)<br>LRR K, L, R)<br>(LRR K, L, R)<br>S (MLRA 149B)<br>45, 149B)<br>ace |
| SOILS Map Unit Name Taxonomy (Sub Profile Descrip Top Depth 0 12 NRCS Hydric NRCS Hydric                             | bgroup):<br>tion (Describe to<br>Depth<br>12<br>18<br><br><br><br>Soil Field Ir<br>A1- Histosol<br>A2 - Histic E;<br>A3 - Black H<br>A4 - Hydrogg<br>A5 - Stratifier<br>A11 - Deplet<br>A12 - Thick I<br>S1 - Sandy M<br>S4 - Sandy C<br>S5 - Sandy F<br>S6 - Strippec<br>S7 - Dark Su                                        | Vergennes clay, 2-6<br>mesic glossaquic h<br>Horizon<br>1<br>2<br><br><br><br><br><br><br><br><br><br><br><br>                                                                                                                                                                                                 | 5%<br>apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br><br> | beence of indic<br>Matrix<br>4/3<br>4/2<br><br><br><br>ors are r                       | ators.) (Type: C=0<br>% 100 95                                                                                                                               | S<br>Concentration, D=<br>7.5YR<br><br><br><br><br><br><br><br><br><br><br><br><br>                   | eries Drainage Class:<br>Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br><br>v Surface (LRR R, MLRA 1498)<br>(CP (LRR R, MLRA 1 | Mottles<br>%<br><br>5<br><br><br><br><u></u><br><u></u><br><u>Indicator</u><br><br><br><br><br><br><br><br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ined Location: PL=Pore L Type C C C Sfor Proble A10 - 2 cm It A16 - Coast S3 - 5cm Mt S7 - Dark S1 S9 - Thin Da F12 - Iron-M F19 - Piedm TA6 - Mesic TF2 - Red P TF12 - Very Other (Expla          | Location<br>M<br><br><br><br><br><br><br>-                                                                                                                                                                                                                                              | (e.g. clay, sand, loam)<br>clay loam<br>clay<br><br><br><br><br><br><br>                                                                               |



#### WETLAND DETERMINATION DATA FORM

Northeast and Northcentral Region

Project/Site: VELCO BUCC New Haven Wetland ID: BUCC 01 Sample Point P UPL\_ **VEGETATION** (Species identified in all uppercase are non-native species.) Tree Stratum (Plot size: 10 meter radius) Dominance Test Worksheet Species Name % Cover Dominant Ind.Status 1 \_\_\_ ---2. ------------Number of Dominant Species that are OBL, FACW, or FAC: 1 (A) 3. ---4 Total Number of Dominant Species Across All Strata: 5 (B) ------------5. ------------6. ---\_\_\_ \_\_\_ ---Percent of Dominant Species That Are OBL, FACW, or FAC: 20.0% (A/B) 7 ------------8. Prevalence Index Worksheet -------9. Total % Cover of: Multiply by: ------------10. OBL spp. x 1 = ---------0 0 ---Total Cover = 0 FACW spp. x 2= 20 40 FAC spp. 0 x 3= 0 FACU spp. x 4 = Sapling/Shrub Stratum (Plot size: 5 meter radius) 85 340 1. #N/A UPL spp. x 5= 0 0 2 #N/A 3. (A) Total 105 380 (B) 4 \_\_\_ ---5 ---\_\_\_ \_\_\_ ---Prevalence Index = B/A = 3.619 6. ---7. -----8. Hydrophytic Vegetation Indicators: -----------9 Yes 🛛 No Rapid Test for Hydrophytic Vegetation 10 ---------Z Yes No Dominance Test is > 50% Total Cover = 0 🛛 No Prevalence Index is ≤ 3.0 \* Yes 2 ⊠ No Yes Morphological Adaptations (Explain) \* Herb Stratum (Plot size: 2 meter radius) I Yes No Problem Hydrophytic Vegetation (Explain) \* 20 V FACW 1. Phalaris arundinacea \* Indicators of hydric soil and wetland hydrology must be FACU 2 Dactylis glomerata 25 y present, unless disturbed or problematic. Trifolium pratense 3. 20 FACU y 4. Phleum pratense 20 Y FACU **Definitions of Vegetation Strata:** FACU 5. 20 Festuca rubra y 6 Tree - Woody plants 3 in. (7.6cm) or more in diameter at breast height (DBH), regardless of height. 7 8. ------------Sapling/Shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft. 9 -----------tall. 10. ------------11. ------------Herb - All herbaceous (non-woody) plants, regardless of size, and 12 --woody plants less than 3.28 ft. tall. 13. \_\_\_ \_\_\_ ------14. ---\_\_\_ ------Woody Vines - All woody vines greater than 3.28 ft. in height. 15. ------\_\_\_ ---Total Cover = 105 Woody Vine Stratum (Plot size: 10 meter radius) 1. ------------2. ---------Hydrophytic Vegetation Present 

Yes
No 3. ------------4. ------------5. ---------Total Cover = 0 Remarks:

#### Additional Remarks:



#### WETLAND DETERMINATION DATA FORM Northeast and Northcentral Region

| Project/Site:                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                        |                                                                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| i iojeci/olie.                                                                                                                                                            | VELCO BUC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C New Haven                                                                                                                                                                                                                                                                                            |                                                                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                        | Stantec Project #:                                                                                                                                                                                                                              | 195601363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 07/18/19                                                              |
| Applicant:                                                                                                                                                                | VELCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                        |                                                                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | County:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Addison                                                               |
| Investigator #1:                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                        |                                                                                        | Invest                                                      | igator #2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | State:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VT                                                                    |
| Soil Unit:                                                                                                                                                                | Vergennes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | clay 2-6%                                                                                                                                                                                                                                                                                              |                                                                                        |                                                             | igato: //Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NIVA                                                                                                                                   | /I/WWI Classification:                                                                                                                                                                                                                          | PEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Wetland ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BUCC 01                                                               |
| Landform:                                                                                                                                                                 | vergennes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01dy, 2 070                                                                                                                                                                                                                                                                                            |                                                                                        |                                                             | cal Relief:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                     |
|                                                                                                                                                                           | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L atituda.                                                                                                                                                                                                                                                                                             | 44 4000 45                                                                             | LUU                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                        |                                                                                                                                                                                                                                                 | Deture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DP WL_01                                                              |
| Slope (%):                                                                                                                                                                | 0-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                        | 44.120645                                                                              | . 43                                                        | ongitude:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NAD83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Community ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PEM                                                                   |
| ,                                                                                                                                                                         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | litions on the site typ                                                                                                                                                                                                                                                                                |                                                                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | o, explain in                                                                                                                          |                                                                                                                                                                                                                                                 | <sup>∞</sup> Yes <sup>□</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |
| Are Vegetation                                                                                                                                                            | , Soil∘, o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | or Hydrology 🗉 sigr                                                                                                                                                                                                                                                                                    | ificantly dis                                                                          | sturbed?                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                        | Are normal circumsta                                                                                                                                                                                                                            | ances present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |
| Are Vegetation                                                                                                                                                            | , Soil∘, o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | or Hydrology 🕤 natu                                                                                                                                                                                                                                                                                    | arally proble                                                                          | ematic?                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                        | <sup>∞</sup> Yes □                                                                                                                                                                                                                              | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |
| SUMMARY OF                                                                                                                                                                | FINDINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                        |                                                                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |
| Hydrophytic Veo                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cont2                                                                                                                                                                                                                                                                                                  |                                                                                        | Yes                                                         | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                                                                                                                                                 | Hydric Soils I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Procent?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ∞ Yes □ No                                                            |
| , , , ,                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                        |                                                                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |
| Wetland Hydrol                                                                                                                                                            | 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                        |                                                             | s • No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                        |                                                                                                                                                                                                                                                 | is this Samp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ling Point v                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vithin A Wetland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d? • Yes • No                                                         |
| Remarks:                                                                                                                                                                  | mowed ag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | fields adjacent                                                                                                                                                                                                                                                                                        |                                                                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |
|                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                        |                                                                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |
| HYDROLOGY                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                        |                                                                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |
|                                                                                                                                                                           | alogy India                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tere (Chack hara if                                                                                                                                                                                                                                                                                    | indiactora                                                                             | ara nat r                                                   | araaant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \ <b>.</b>                                                                                                                             |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |
| •                                                                                                                                                                         | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ators (Check here if                                                                                                                                                                                                                                                                                   | indicators                                                                             | are not p                                                   | bresent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ):                                                                                                                                     |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |
| Primary:                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                        |                                                                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Secondary:                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |
|                                                                                                                                                                           | A1 - Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                        |                                                                                        | 0                                                           | B9 - Wate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B6 - Surface Soil (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                     |
| 0                                                                                                                                                                         | A2 - High Wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                        |                                                                                        |                                                             | B13 - Aqu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B10 - Drainage Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       |
| 2                                                                                                                                                                         | A3 - Saturatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                        |                                                                                        | 0                                                           | B15 - Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B16 - Moss Trim L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       |
| 0                                                                                                                                                                         | B1 - Water M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                        |                                                                                        |                                                             | C1 - Hydro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C2 - Dry-Season V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       |
| 0                                                                                                                                                                         | B2 - Sedimer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nt Deposits                                                                                                                                                                                                                                                                                            |                                                                                        | 0                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                        | spheres on Living Roots                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C8 - Crayfish Burr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |
|                                                                                                                                                                           | B3 - Drift Dep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                        |                                                                                        |                                                             | C4 - Prese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ence of Re                                                                                                                             | duced Iron                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sible on Aerial Imagery                                               |
| 0                                                                                                                                                                         | B4 - Algal Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | at or Crust                                                                                                                                                                                                                                                                                            |                                                                                        | 0                                                           | C6 - Rece                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nt Iron Re                                                                                                                             | duction in Tilled Soils                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D1 - Stunted or St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |
| 0                                                                                                                                                                         | B5 - Iron Dep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | osits                                                                                                                                                                                                                                                                                                  |                                                                                        | 0                                                           | C7 - Thin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Muck Surf                                                                                                                              | ace                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D2 - Geomorphic I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Position                                                              |
|                                                                                                                                                                           | B7 - Inundatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | on Visible on Aerial Ima                                                                                                                                                                                                                                                                               | gery                                                                                   | 8                                                           | Other (Exp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | olain in Re                                                                                                                            | marks)                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D3 - Shallow Aquit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ard                                                                   |
| 0                                                                                                                                                                         | B8 - Sparsely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Vegetated Concave S                                                                                                                                                                                                                                                                                    | urface                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D4 - Microtopogra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | phic Relief                                                           |
|                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                        |                                                                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D5 - FAC-Neutral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Test                                                                  |
| Field Observat                                                                                                                                                            | ione                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                        |                                                                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |
|                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                        |                                                                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |
| Surface Water                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | □ Yes ∞ No                                                                                                                                                                                                                                                                                             | Depth:                                                                                 |                                                             | (in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                        |                                                                                                                                                                                                                                                 | Wetland Hyd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | drology Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | esent?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes - No                                                              |
| Water Table Pre                                                                                                                                                           | esent?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ∞ Yes □ No                                                                                                                                                                                                                                                                                             | Depth:                                                                                 | 10 in                                                       | (in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                        |                                                                                                                                                                                                                                                 | monuna mye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | liologyin                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100 110                                                               |
| Saturation Pres                                                                                                                                                           | ent?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ∞ Yes □ No                                                                                                                                                                                                                                                                                             | Depth:                                                                                 | 0 (surf)                                                    | (in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |
|                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ., .                                                                                                                                                                                                                                                                                                   |                                                                                        |                                                             | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                        | ) (6 )) (1)                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N1/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |
| Describe Record                                                                                                                                                           | ed Data (stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eam gauge, monitorin                                                                                                                                                                                                                                                                                   | ig well, aeria                                                                         | ai photos                                                   | , previous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Inspection                                                                                                                             | ns), if available:                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |
| Remarks:                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                        |                                                                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |
|                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                        |                                                                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |
| SOILS                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                        |                                                                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |
|                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SOILS                                                                                                                                                                                                                                                                                                  |                                                                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |
| Map Unit Name: Vergennes clay, 2-6% Series Drainage Class: mod well drained                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                        |                                                                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |
|                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                        |                                                                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S                                                                                                                                      | eries Drainage Class:                                                                                                                                                                                                                           | mod wen did                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ineu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |
| Taxonomy (Sub                                                                                                                                                             | group):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mesic glossaquic ha                                                                                                                                                                                                                                                                                    | apludalf                                                                               | absence of indic                                            | atore ) (Tune: C=C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ining M-Matrix)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |
| Taxonomy (Sub<br>Profile Descrip                                                                                                                                          | ogroup):<br>tion (Describe to t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mesic glossaquic ha                                                                                                                                                                                                                                                                                    | apludalf                                                                               |                                                             | ators.) (Type: C=C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        | eries Drainage Class:<br>Depletion, RM=Reduced Matrix, CS=Cove                                                                                                                                                                                  | ered/Coated Sand Grains;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ining, M=Matrix)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Toyturo                                                               |
| Taxonomy (Sub<br>Profile Descrip<br>Top                                                                                                                                   | ogroup):<br>otion (Describe to t<br>Bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mesic glossaquic ha                                                                                                                                                                                                                                                                                    | apludalf                                                                               | Matrix                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Concentration, D=                                                                                                                      | Depletion, RM=Reduced Matrix, CS=Cove                                                                                                                                                                                                           | ered/Coated Sand Grains;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Location: PL=Pore L                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Texture                                                               |
| Taxonomy (Sub<br>Profile Descrip                                                                                                                                          | ogroup):<br>tion (Describe to t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mesic glossaquic ha                                                                                                                                                                                                                                                                                    | apludalf                                                                               | Matrix                                                      | ators.) (Type: C=C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Concentration, D=                                                                                                                      |                                                                                                                                                                                                                                                 | ered/Coated Sand Grains;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ining, M=Matrix)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Texture<br>(e.g. clay, sand, loam)                                    |
| Taxonomy (Sub<br>Profile Descrip<br>Top                                                                                                                                   | ogroup):<br>otion (Describe to t<br>Bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mesic glossaquic ha                                                                                                                                                                                                                                                                                    | apludalf                                                                               | Matrix                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Concentration, D=                                                                                                                      | Depletion, RM=Reduced Matrix, CS=Cove                                                                                                                                                                                                           | ered/Coated Sand Grains;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Location: PL=Pore L                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       |
| Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth                                                                                                                          | ogroup):<br>otion (Describe to t<br>Bottom<br>Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mesic glossaquic ha<br>the depth needed to document the indi<br>Horizon                                                                                                                                                                                                                                | apludalf<br>cator or confirm the a<br>Color (I                                         | Matrix<br>Moist)                                            | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Concentration, D=                                                                                                                      | Depletion, RM=Reduced Matrix, CS=Cove                                                                                                                                                                                                           | ered/Coated Sand Grains;<br>Mottles<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Location: PL=Pore L                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (e.g. clay, sand, loam)                                               |
| Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>8                                                                                                                | ogroup):<br>otion (Describe to t<br>Bottom<br>Depth<br>8<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mešic glossaquic ha<br>he depth needed to document the indi<br>Horizon<br>1<br>2                                                                                                                                                                                                                       | apludalf<br>cator or confirm the a<br>Color (I<br>2.5Y<br>2.5Y                         | Matrix<br>Moist)<br>4/2                                     | %<br>100<br>90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br>7.5YR                                                                                                                              | Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6                                                                                                                                                                               | Mottles<br>%<br><br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Location: PL=Pore L<br>Type<br><br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Location<br><br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (e.g. clay, sand, loam)<br>clay loam<br>clay                          |
| Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>8<br>                                                                                                            | pgroup):<br>ption (Describe to to<br>Bottom<br>Depth<br>8<br>18<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mešic glossaquic ha<br>the depth needed to document the indi<br>Horizon<br>1<br>2<br>                                                                                                                                                                                                                  | apludalf<br>cator or confirm the a<br>Color (I<br>2.5Y<br>2.5Y<br>                     | Matrix<br>Moist)<br>4/2<br>4/2<br>                          | %<br>100<br>90<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>7.5YR<br>                                                                                                                          | Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br>                                                                                                                                                                           | ered/Coated Sand Grains;<br>Mottles<br>%<br><br>10<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Location: PL=Pore L<br>Type<br><br>C<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                | Location<br><br>M<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (e.g. clay, sand, loam)<br>clay loam<br>clay<br>                      |
| Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>8<br><br>                                                                                                        | pgroup):<br>ption (Describe to to<br>Bottom<br>Depth<br>8<br>18<br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mešic glossaquic ha<br>the depth needed to document the indi<br>Horizon<br>1<br>2<br>                                                                                                                                                                                                                  | apludalf<br>cator or confirm the a<br>Color (I<br>2.5Y<br>2.5Y<br><br>                 | Matrix<br>Moist)<br>4/2<br>4/2<br>                          | %<br>100<br>90<br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <br>7.5YR<br><br>                                                                                                                      | Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br>                                                                                                                                                                       | Mottles<br>%<br><br>10<br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Location<br><br>M<br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (e.g. clay, sand, loam)<br>clay loam<br>clay<br><br>                  |
| Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>8<br>                                                                                                            | pgroup):<br>ption (Describe to to<br>Bottom<br>Depth<br>8<br>18<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mešic glossaquic ha<br>the depth needed to document the indi<br>Horizon<br>1<br>2<br>                                                                                                                                                                                                                  | apludalf<br>cator or confirm the a<br>Color (I<br>2.5Y<br>2.5Y<br>                     | Matrix<br>Moist)<br>4/2<br>4/2<br>                          | %<br>100<br>90<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>7.5YR<br>                                                                                                                          | Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br>                                                                                                                                                                           | ered/Coated Sand Grains;<br>Mottles<br>%<br><br>10<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Location: PL=Pore L<br>Type<br><br>C<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                | Location<br><br>M<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (e.g. clay, sand, loam)<br>clay loam<br>clay<br>                      |
| Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>8<br><br>                                                                                                        | pgroup):<br>ption (Describe to to<br>Bottom<br>Depth<br>8<br>18<br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mešic glossaquic ha<br>the depth needed to document the indi<br>Horizon<br>1<br>2<br>                                                                                                                                                                                                                  | apludalf<br>cator or confirm the a<br>Color (I<br>2.5Y<br>2.5Y<br><br>                 | Matrix<br>Moist)<br>4/2<br>4/2<br>                          | %<br>100<br>90<br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <br>7.5YR<br><br>                                                                                                                      | Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br>                                                                                                                                                                       | Mottles<br>%<br><br>10<br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Location<br><br>M<br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (e.g. clay, sand, loam)<br>clay loam<br>clay<br><br>                  |
| Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>8<br><br><br>                                                                                                    | by tion (Describe to to the total sector) is the total sector of t   | mešic glossaquic ha<br>he depth needed to document the indi<br>Horizon<br>1<br>2<br><br>                                                                                                                                                                                                               | apludalf<br>cator or confirm the a<br>Color (I<br>2.5Y<br>2.5Y<br><br><br>             | Matrix<br>Moist)<br>4/2<br>4/2<br><br>                      | %<br>100<br>90<br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <br>7.5YR<br><br>                                                                                                                      | Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br>                                                                                                                                                                   | Mottles<br>%<br><br>10<br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Location: PL=Pore L<br>Type<br><br>C<br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                            | Location<br><br>M<br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (e.g. clay, sand, loam)<br>clay loam<br>clay<br><br><br>              |
| Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>8<br><br><br>                                                                                                    | by tion (Describe to to the total sector) is the total sector of t   | mešic glossaquic ha<br>he depth needed to document the indi<br>Horizon<br>1<br>2<br><br>                                                                                                                                                                                                               | apludalf<br>cator or confirm the a<br>Color (I<br>2.5Y<br>2.5Y<br><br><br>             | Matrix<br>Moist)<br>4/2<br>4/2<br><br>                      | %<br>100<br>90<br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <br>7.5YR<br><br>                                                                                                                      | Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br>                                                                                                                                                                   | Mottles<br>%<br><br>10<br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Location: PL=Pore L<br>Type<br><br>C<br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                            | Location<br><br>M<br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (e.g. clay, sand, loam)<br>clay loam<br>clay<br><br><br>              |
| Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>8<br><br><br><br><br><br><br>                                                                                    | bgroup):<br>tion (Describe to to<br>Depth<br>8<br>18<br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mešic glossaquic ha<br>the depth needed to document the indi<br>Horizon<br>1<br>2<br><br><br><br><br><br><br>                                                                                                                                                                                          | apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br> | Matrix<br>Moist)<br>4/2<br><br><br><br><br>                 | %           100         90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <br>7.5YR<br><br><br><br>                                                                                                              | Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br>                                                                                                                                                                   | Mottles<br>%<br><br>10<br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Location: PL=Pore L<br><br>C<br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                    | Location<br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (e.g. clay, sand, loam)<br>clay loam<br>clay<br><br><br>              |
| Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>8<br><br><br><br><br>NRCS Hydric S                                                                               | ogroup):<br>tion (Describe to to<br>Depth<br>8<br>18<br><br><br><br>Soil Field In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mešic glossaquic ha<br>he depth needed to document the indi<br>Horizon<br>1<br>2<br><br>                                                                                                                                                                                                               | apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br> | Matrix<br>Moist)<br>4/2<br>4/2<br><br><br><br><br>ors are r | %           100         90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <br>7.5YR<br><br><br><br>t):                                                                                                           | Depletion, RtM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br><br><br><br><br><br>                                                                                                                                              | Mottles<br>%<br><br>10<br><br><br><br><br>Indicator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Location: PL=Pore L<br>Type<br><br>C<br><br><br><br><br><br>s for Proble                                                                                                                                                                                                                                                                                                                                                                                                                | Location<br><br>M<br><br><br><br>matic Soils <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (e.g. clay, sand, loam)<br>clay loam<br><br><br><br><br><br><br>      |
| Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>8<br><br><br><br><br>NRCS Hydric S                                                                               | egroup):<br>tion (Describe to 1<br>Bottom<br>Depth<br>8<br>18<br><br><br><br><br>Soil Field In<br>A1- Histosol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mešic glossaquic ha<br>the depth needed to document the indi<br>Horizon<br>1<br>2<br><br><br><br><br><br><br><br><br>                                                                                                                                                                                  | apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br> | Matrix<br>Moist)<br>4/2<br><br><br><br><br>                 | %           100         90                                                       S8 - Polyw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <br>7.5YR<br><br><br><br>t e):<br>ralue Belov                                                                                          | Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br><br><br>v Surface (LRR R, MLRA 149B)                                                                                                                               | Mottles<br>%<br><br>10<br><br><br><br><br><u>Indicator</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Location: PL=Pore L<br>Type<br><br>C<br><br><br><br><br><b>s for Proble</b><br>A10 - 2 cm l                                                                                                                                                                                                                                                                                                                                                                                             | Location<br><br>M<br><br><br><br><br>matic Soils <sup>1</sup><br>Muck (LRR K, L, MLRA 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (e.g. clay, sand, loam)<br>clay loam<br><br><br><br><br><br><br><br>- |
| Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>8<br><br><br><br>NRCS Hydric S<br>°                                                                              | egroup):<br>tion (Describe to to<br>Depth<br>8<br>18<br><br><br><br>Soil Field In<br>A1- Histosol<br>A2 - Histic Ep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mešic glossaquic ha<br>the depth needed to document the indi-<br>Horizon<br>1<br>2<br><br><br><br><br><br>idicators (check hea<br>bipedon                                                                                                                                                              | apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br> | Matrix<br>Moist)<br>4/2<br>4/2<br><br><br><br><br>ors are r | %           100         90                           S8 - Polyv         S9 - Thin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                        | Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br><br>v Surface (LRR R, MLRA 149B)<br>ICO (LRR R, MLRA 149B)                                                                                                         | Mottles<br>9%<br><br>10<br><br><br><br><br><u>Indicator</u><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Location: PL=Pore L<br>Type<br><br>C<br><br><br><br><br>s for Proble<br>A10 - 2 cm l<br>A16 - Coast                                                                                                                                                                                                                                                                                                                                                                                     | Location<br><br>M<br><br><br><br><br>matic Soils <sup>1</sup><br>Muck (LRR K, L, MLRA 14<br>Prairie Redox (LRR )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (e.g. clay, sand, loam)<br>clay loam<br><br><br><br><br><br><br><br>- |
| Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>8<br><br><br><br>NRCS Hydric S                                                                                   | bgroup):<br>tion (Describe to to<br>Depth<br>8<br>18<br><br><br><br>Soil Field In<br>A1- Histosol<br>A2 - Histic Ep<br>A3 - Black Hi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mešic glossaquic ha<br>the depth needed to document the indi-<br>Horizon<br>1<br>2<br><br><br><br><br><br><br>idicators (check here<br>bipedon<br>stic                                                                                                                                                 | apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br> | Matrix<br>Moist)<br>4/2<br>4/2<br><br><br><br><br>ors are r | %           100         90                       Solution            Solution |                                                                                                                                        | Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br><br><br>v Surface (LRR R, MLRA 149B)<br>ICP (LRR R, MLRA 149B)<br>ICP (LRR R, MLRA 149B)<br>ICP (LRR R, MLRA 149B)                                                 | Mottles<br>%<br><br>10<br><br><br><br><br>Indicator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Location: PL=Pore L<br>Type<br><br>C<br><br><br><br><br>s for Proble<br>A10 - 2 cm I<br>A16 - Coast<br>S3 - 5cm Mi                                                                                                                                                                                                                                                                                                                                                                      | Location<br><br>M<br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (e.g. clay, sand, loam)<br>clay loam<br><br><br><br><br><br><br><br>- |
| Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>8<br><br><br><br><br>NRCS Hydric S                                                                               | bgroup):<br>tion (Describe to to<br>Depth<br>8<br>18<br><br><br><br>Soil Field In<br>A1- Histosol<br>A2 - Histic Ep<br>A3 - Black Hi<br>A4 - Hydroge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mešic glossaquic ha<br>the depth needed to document the indi-<br>Horizon<br>1<br>2<br><br><br><br><br><br><br>idicators (check here<br>pipedon<br>stic<br>on Sulfide                                                                                                                                   | apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br> | Matrix<br>Moist)<br>4/2<br>4/2<br><br><br><br><br>ors are r | %           100         90                           Soft presen         S9 - Thin I           F1 - Loarm         F2 - Loarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                        | Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br><br><br>v Surface (LRR R, MLRA 149B)<br>(CP (LRR R, MLRA 149B)<br>Mineral (LRR K, L)<br>Vatrix                                                                     | Mottles<br>%<br><br>10<br><br><br><br><br><br>Indicator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Location: PL=Pore L<br>Type<br><br>C<br><br><br><br>s for Proble<br>A10 - 2 cm Mi<br>A16 - Coast<br>S3 - 5cm Mi<br>S7 - Dark Si                                                                                                                                                                                                                                                                                                                                                         | Location<br><br>M<br><br><br><br><br><br>matic Soils <sup>1</sup><br>Muck (LRR K, L, MLRA 14<br>Prairie Redox (LRR 1<br>Jcky Peat of Peat (LUR 14)<br>Urface (LRR K, L, M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (e.g. clay, sand, loam)<br>clay loam<br><br><br><br><br><br><br><br>- |
| Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>8<br><br><br><br><br>NRCS Hydric S                                                                               | bgroup):<br>tion (Describe to T<br>Bottom<br>Depth<br>8<br>18<br><br><br><br><br>Soil Field In<br>A1- Histosol<br>A2 - Histic Ep<br>A3 - Black Hi<br>A4 - Hydroge<br>A5 - Stratifiec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mešic glossaquic ha<br>he depth needed to document the indi<br>Horizon<br>1<br>2<br><br><br><br><br><br>dicators (check here<br>bipedon<br>stic<br>n Sulfide<br>d Layers                                                                                                                               | apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br> | Matrix<br>Moist)<br>4/2<br>4/2<br><br><br><br><br>ors are r | %           100         90                       S8 - Polyv         S9 - Thin           F1 - Loam         F2 - Loam           F3 - Deple                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Torcentration, D-<br>T.5YR T.5YR T.                                                                | Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br><br><br>v Surface (LRR R, MLRA 149B)<br>CCe (LRR R, MLRA 149B)<br>CCe (LRR R, MLRA 149B)<br>Aligneral (LRR K, L)<br>Vieweither (LRR K, L)<br>Vieweither (LRR K, L) | Mottles<br>%<br><br>10<br><br><br><br><br><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Location: PL=Pore L<br>Type<br><br>C<br><br><br><br><br><b>s for Proble</b><br>A10 - 2 cm I<br>A10 - 2 cm I<br>A16 - Coasti<br>S3 - 5cm Mi<br>S7 - Dark Si<br>S8 - Polyval                                                                                                                                                                                                                                                                                                              | Location<br><br>M<br><br><br><br><br><br>matic Soils <sup>1</sup><br>Muck (LRR K, L, MLRA 14<br>Prairie Redox (LRR 1<br>Jcky Peat of Peat (L<br>urface (LRR K, L, M)<br>ue Below Surface (L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (e.g. clay, sand, loam)<br>clay loam<br><br><br><br><br><br><br><br>- |
| Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>8<br><br><br><br>NRCS Hydric S                                                                                   | group):<br>tion (Describe to 1<br>Bottom<br>Depth<br>8<br>18<br><br><br><br>Soil Field In<br>A1- Histosol<br>A2 - Histic Ep<br>A3 - Black Hi<br>A4 - Hydroge<br>A5 - Stratifier<br>A11 - Deplete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mešic glossaquic ha<br>the depth needed to document the indi-<br>Horizon<br>1<br>2<br><br><br><br><br><br>dicators (check here<br>bipedon<br>stic<br>stic<br>stic<br>bipedon<br>stic<br>stic<br>d Layers<br>ed Below Dark Surface                                                                      | apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br> | Matrix<br>Moist)<br>4/2<br>4/2<br><br><br><br><br>ors are r | %           100         90                           S8 - Polyw         S9 - Thin I           F1 - Loam         F2 - Loam           F3 - Deple         F6 - Redo                                                                                                                                                                                                                                                                                                                                                                                                                                  | Torcentration, De<br>T.5YR<br><br><br><br><br>t e):<br>value Belov<br>Dark Surfa<br>y Mucky N<br>y Gleyed I<br>ted Matrix<br>x Dark Su | Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br><br><br>v Surface (LRR R, MLRA 1498)<br>ICC (LRR R, MLRA 1498)<br>ICC (LRR R, MLRA 1498)<br>Mineral (LRR K, L)<br>Vatrix<br>fface                                  | Mottles<br>%<br><br>10<br><br><br><br><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Location: PL=Pore L<br>Type<br><br>C<br><br><br><br><br>s for Proble<br>A10 - 2 cm I<br>A16 - Coast<br>S3 - Scm Mi<br>S7 - Dark Si<br>S8 - Polyval<br>S9 - Thin Da                                                                                                                                                                                                                                                                                                                      | Location<br><br>M<br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (e.g. clay, sand, loam)<br>clay loam<br><br><br><br><br><br><br><br>- |
| Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>8<br><br><br><br><br>NRCS Hydric S                                                                               | group):<br>tion (Describe to to<br>Depth<br>8<br>18<br><br><br><br>Soil Field In<br>A1- Histosol<br>A2 - Histic Ep<br>A3 - Black Hi<br>A4 - Hydroge<br>A5 - Stratifice<br>A11 - Deplete<br>A12 - Thick E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mešic glossaquic ha<br>the depth needed to document the indi-<br>Horizon<br>1<br>2<br><br><br><br><br><br><br>                                                                                                                                                                                         | apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br> | Matrix<br>Moist)<br>4/2<br>4/2<br><br><br><br><br>ors are r | %           100         90                       S8 - Polyv         S9 - Thin           F1 - Loam         F2 - Loam           F3 - Deple                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Torcentration, De<br>T.5YR<br><br><br><br><br>t e):<br>value Belov<br>Dark Surfa<br>y Mucky N<br>y Gleyed I<br>ted Matrix<br>x Dark Su | Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br><br><br>v Surface (LRR R, MLRA 1498)<br>ICC (LRR R, MLRA 1498)<br>ICC (LRR R, MLRA 1498)<br>Mineral (LRR K, L)<br>Vatrix<br>fface                                  | Mottles<br>%<br><br>10<br><br><br><br><br><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Location: PL=Pore L              C                                                                                                                                                      Softer                                                                                                                                                                                                                                                                                          | Location<br><br>M<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> | (e.g. clay, sand, loam)<br>clay loam<br><br><br><br><br><br><br><br>- |
| Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>8<br><br><br><br>NRCS Hydric S                                                                                   | group):<br>tion (Describe to 1<br>Bottom<br>Depth<br>8<br>18<br><br><br><br>Soil Field In<br>A1- Histosol<br>A2 - Histic Ep<br>A3 - Black Hi<br>A4 - Hydroge<br>A5 - Stratifier<br>A11 - Deplete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mešic glossaquic ha<br>the depth needed to document the indi-<br>Horizon<br>1<br>2<br><br><br><br><br><br><br>                                                                                                                                                                                         | apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br> | Matrix<br>Moist)<br>4/2<br>4/2<br><br><br><br><br>ors are r | %           100         90                           S8 - Polyw         S9 - Thin I           F1 - Loam         F2 - Loam           F3 - Deple         F6 - Redo                                                                                                                                                                                                                                                                                                                                                                                                                                  | Torcentration, D=<br>T.5YR<br><br><br><br>t e):<br>alue Belov<br>Dark Surfa<br>y Mucky N<br>y Gleyed I<br>ated Matrix<br>x Dark Su     | Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br>v Surface (LRR R, MLRA 149B)<br>ICP (LRR R, MLRA 149B)<br>ICP (LRR R, MLRA 149B)<br>Inneral (LRR K, L)<br>Matrix<br>iface<br>Surface                               | Mottles<br>%<br><br>10<br><br><br><br><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Location: PL=Pore L              C                                                                                                                                                      Softer                                                                                                                                                                                                                                                                                          | Location<br><br>M<br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (e.g. clay, sand, loam)<br>clay loam<br><br><br><br><br><br><br><br>- |
| Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>8<br><br><br><br>NRCS Hydric S                                                                                   | group):<br>tion (Describe to to<br>Depth<br>8<br>18<br><br><br><br>Soil Field In<br>A1- Histosol<br>A2 - Histic Ep<br>A3 - Black Hi<br>A4 - Hydroge<br>A5 - Stratifice<br>A11 - Deplete<br>A12 - Thick E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mešic glossaquic ha<br>the depth needed to document the indi-<br>Horizon<br>1<br>2<br><br><br><br><br><br><br>                                                                                                                                                                                         | apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br> | Matrix<br>Moist)<br>4/2<br>4/2<br><br><br><br><br>ors are r | %           100         90                       S8 - Polyv         S9 - Thin           F1 - Loam         F2 - Loam           F3 - Deple         F6 - Redo           F6 - Redo         F7 - Deple                                                                                                                                                                                                                                                                                                                                                                                                 | Torcentration, D=<br>T.5YR<br><br><br><br>t e):<br>alue Belov<br>Dark Surfa<br>y Mucky N<br>y Gleyed I<br>ated Matrix<br>x Dark Su     | Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br>v Surface (LRR R, MLRA 149B)<br>ICP (LRR R, MLRA 149B)<br>ICP (LRR R, MLRA 149B)<br>Inneral (LRR K, L)<br>Matrix<br>iface<br>Surface                               | Mottles<br>%<br><br>10<br><br><br><br><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Location: PL=Pore L<br>Type<br><br>C<br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                            | Location<br><br>M<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> | (e.g. clay, sand, loam)<br>clay loam<br><br><br><br><br><br><br><br>- |
| Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>8<br><br><br><br>NRCS Hydric S                                                                                   | bgroup):<br>tion (Describe to to<br>Depth<br>8<br>18<br><br><br><br>Soil Field In<br>A1- Histosol<br>A2 - Histic Ep<br>A3 - Black Hi<br>A4 - Hydroge<br>A5 - Stratified<br>A11 - Deplete<br>A12 - Thick E<br>S1 - Sandy M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mesic glossaquic ha<br>the depth needed to document the indi<br>Horizon<br>1<br>2<br><br><br><br><br><br><br>dicators (check here<br>bipedon<br>istic<br>en Sulfide<br>d Layers<br>ed Below Dark Surface<br>Dark Surface<br>Dark Surface<br>Muck Mineral<br>Sleyed Matrix                              | apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br> | Matrix<br>Moist)<br>4/2<br>4/2<br><br><br><br><br>ors are r | %           100         90                       S8 - Polyv         S9 - Thin           F1 - Loam         F2 - Loam           F3 - Deple         F6 - Redo           F6 - Redo         F7 - Deple                                                                                                                                                                                                                                                                                                                                                                                                 | Torcentration, D=<br>T.5YR<br><br><br><br>t e):<br>alue Belov<br>Dark Surfa<br>y Mucky N<br>y Gleyed I<br>ated Matrix<br>x Dark Su     | Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br>v Surface (LRR R, MLRA 149B)<br>ICP (LRR R, MLRA 149B)<br>ICP (LRR R, MLRA 149B)<br>Inneral (LRR K, L)<br>Matrix<br>iface<br>Surface                               | Mottles<br>%<br><br>10<br><br><br><br><br><br>Indicator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Location: PL=Pore L<br>Type<br><br>C<br><br><br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                    | Location M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (e.g. clay, sand, loam)<br>clay loam<br><br><br><br><br><br><br><br>- |
| Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>8<br><br><br><br>NRCS Hydric S                                                                                   | group):<br>tion (Describe to T<br>Bottom<br>Depth<br>8<br>18<br><br><br><br><br>Soil Field In<br>A1- Histosol<br>A2 - Histic Ep<br>A3 - Black Hi<br>A4 - Hydroge<br>A5 - Stratifiec<br>A11 - Deplete<br>A12 - Thick D<br>S1 - Sandy M<br>S4 - Sandy G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mešic glossaquic ha<br>the depth needed to document the indi-<br>Horizon<br>1<br>2<br><br><br><br><br><br>dicators (check here<br>objeedon<br>stic<br>on Sulfide<br>d Layers<br>ed Below Dark Surface<br>Dark Surface<br>Muck Mineral<br>Bleyed Matrix<br>Redox                                        | apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br> | Matrix<br>Moist)<br>4/2<br>4/2<br><br><br><br><br>ors are r | %           100         90                       S8 - Polyv         S9 - Thin           F1 - Loam         F2 - Loam           F3 - Deple         F6 - Redo           F6 - Redo         F7 - Deple                                                                                                                                                                                                                                                                                                                                                                                                 | Torcentration, D=<br>T.5YR<br><br><br><br>t e):<br>alue Belov<br>Dark Surfa<br>y Mucky N<br>y Gleyed I<br>ated Matrix<br>x Dark Su     | Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br>v Surface (LRR R, MLRA 149B)<br>ICP (LRR R, MLRA 149B)<br>ICP (LRR R, MLRA 149B)<br>Inneral (LRR K, L)<br>Matrix<br>iface<br>Surface                               | Mottles<br>%<br><br>10<br><br><br><br><br>Indicator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Location: PL=Pore L<br>Type<br><br>C<br><br><br><br><br>s for Proble<br>A10 - 2 cm I<br>A10 - 2 cm I<br>A10 - 2 cm I<br>A10 - 2 cm I<br>S3 - 5cm Mi<br>S3 - Dark Si<br>S4 - Polyval<br>S9 - Thin Da<br>F12 - Iron-M<br>F19 - Piedm<br>TA6 - Mesic<br>TF2 - Red F                                                                                                                                                                                                                        | Location<br><br>M<br><br><br><br><br>matic Soils <sup>1</sup><br>Muck (LRR K, L, MLRA 14<br>Prairie Redox (LRR I<br>Lcky Peat of Peat (L<br>urface (LRR K, L, M)<br>ue Below Surface (L<br>anganese Masses<br>ont Floodplain Soils<br>Spodic (MLRA 144A, 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (e.g. clay, sand, loam)<br>clay loam<br><br><br><br><br><br><br><br>- |
| Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>8<br><br><br><br>NRCS Hydric S                                                                                   | group):<br>tion (Describe to the formation of the formation | mešic glossaquic ha<br>the depth needed to document the indi-<br>Horizon<br>1<br>2<br><br><br><br><br><br>dicators (check here<br>objeedon<br>stic<br>on Sulfide<br>d Layers<br>ed Below Dark Surface<br>Dark Surface<br>Muck Mineral<br>Bleyed Matrix<br>Redox                                        | apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br> | Matrix<br>Moist)<br>4/2<br>4/2<br><br><br><br><br>ors are r | %           100         90                       S8 - Polyv         S9 - Thin           F1 - Loam         F2 - Loam           F3 - Deple         F6 - Redo           F6 - Redo         F7 - Deple                                                                                                                                                                                                                                                                                                                                                                                                 | Torcentration, D=<br>T.5YR<br><br><br><br>t e):<br>alue Belov<br>Dark Surfa<br>y Mucky N<br>y Gleyed I<br>ated Matrix<br>x Dark Su     | Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br>v Surface (LRR R, MLRA 149B)<br>ICP (LRR R, MLRA 149B)<br>ICP (LRR R, MLRA 149B)<br>Inneral (LRR K, L)<br>Matrix<br>iface<br>Surface                               | Mottles<br>%<br><br>10<br><br><br><br><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u> | Location: PL=Pore L<br>Type<br><br>C<br><br><br><br><br>s for Proble<br>A10 - 2 cm I<br>A16 - Coast<br>S3 - Scm Mi<br>S7 - Dark Si<br>S8 - Polyval<br>S9 - Thin Da<br>F12 - Iron-M<br>F19 - Piedm<br>TA6 - Mesic<br>TF2 - Red F<br>TF12 - Very                                                                                                                                                                                                                                          | Location M matic Soils 1 Muck (LRR K, L, MLRA 14 Prairie Redox (LRR I,<br>Jcky Peat of Peat (L<br>Urface (LRR K, L, ML<br>ue Below Surface (L<br>ark Surface (LRR K, L)<br>langanese Masses<br>iont Floodplain Soik<br>Spodic (MLRA 144, 14 Parent Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (e.g. clay, sand, loam)<br>clay loam<br><br><br><br><br><br><br><br>- |
| Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>8<br><br><br><br>NRCS Hydric S                                                                                   | group):<br>tion (Describe to the formation of the formation | mesic glossaquic ha<br>the depth needed to document the indi-<br>Horizon<br>1<br>2<br><br><br><br><br><br><br>                                                                                                                                                                                         | apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br> | Matrix<br>Moist)<br>4/2<br>4/2<br><br><br><br><br>ors are r | %           100         90                       S8 - Polyv         S9 - Thin           F1 - Loam         F2 - Loam           F3 - Deple         F6 - Redo           F6 - Redo         F7 - Deple                                                                                                                                                                                                                                                                                                                                                                                                 | Torcentration, D=<br>T.5YR<br><br><br><br>t e):<br>alue Belov<br>Dark Surfa<br>y Mucky N<br>y Gleyed I<br>ated Matrix<br>x Dark Su     | Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br>v Surface (LRR R, MLRA 149B)<br>ICP (LRR R, MLRA 149B)<br>ICP (LRR R, MLRA 149B)<br>Inneral (LRR K, L)<br>Matrix<br>iface<br>Surface                               | And Grains:<br>Mottles<br>%<br><br>10<br><br><br><br><br>Indicator<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Location: PL=Pore L           Type              C <td>Location<br/><br/>M<br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/>Muck (LRR K, L, MLRA 14<br/>Prairie Redox (LRR I)<br/>Jucky Peat of Peat (L<br/>Urface (LRR K, L, M)<br/>ue Below Surface (LR K, L)<br/>langanese Masses<br/>ont Floodplain Soils<br/>Spodic (MLRA 144A, 14<br/>arent Material<br/>Shallow Dark Surfa</td> <td>(e.g. clay, sand, loam)<br/>clay loam<br/><br/><br/><br/><br/><br/><br/><br/>-</td> | Location<br><br>M<br><br><br><br><br><br><br><br><br><br><br><br>Muck (LRR K, L, MLRA 14<br>Prairie Redox (LRR I)<br>Jucky Peat of Peat (L<br>Urface (LRR K, L, M)<br>ue Below Surface (LR K, L)<br>langanese Masses<br>ont Floodplain Soils<br>Spodic (MLRA 144A, 14<br>arent Material<br>Shallow Dark Surfa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (e.g. clay, sand, loam)<br>clay loam<br><br><br><br><br><br><br><br>- |
| Taxonomy (Sub<br>Profile Descrip<br>Depth<br>0<br>8<br><br><br><br>NRCS Hydric S                                                                                          | group):<br>tion (Describe to the formation of the formation | mesic glossaquic ha<br>the depth needed to document the indi-<br>Horizon<br>1<br>2<br><br><br><br><br><br><br>                                                                                                                                                                                         | apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br> | Matrix<br>Moist)<br>4/2<br>4/2<br><br><br><br><br>ors are r | %           100         90                       S8 - Polyv         S9 - Thin I           F1 - Loam         F2 - Loam           F3 - Deple         F6 - Redo           F6 - Redo         F7 - Deple                                                                                                                                                                                                                                                                                                                                                                                               | Torcentration, D=<br>T.5YR<br><br><br><br>t e):<br>alue Belov<br>Dark Surfa<br>y Mucky N<br>y Gleyed I<br>ated Matrix<br>x Dark Su     | Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br>v Surface (LRR R, MLRA 149B)<br>ICP (LRR R, MLRA 149B)<br>ICP (LRR R, MLRA 149B)<br>Inneral (LRR K, L)<br>Matrix<br>iface<br>Surface                               | And Grains:<br>Mottles<br>%<br><br>10<br><br><br><br><br>Indicator<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Location: PL=Pore L           Type              C                                                                                                                                                        S8 - Polyval <td>Location<br/><br/>M<br/><br/><br/><br/><br/><br/></td> <td>(e.g. clay, sand, loam)<br/>clay loam<br/><br/><br/><br/><br/><br/><br/><br/>-</td>                                                                                                                | Location<br><br>M<br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (e.g. clay, sand, loam)<br>clay loam<br><br><br><br><br><br><br><br>- |
| Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>8<br><br><br><br>NRCS Hydric S<br>NRCS Hydric S                                                                  | group):<br>tion (Describe to the formation of the formation | mesic glossaquic ha<br>the depth needed to document the indi<br>Horizon<br>1<br>2<br><br><br><br><br><br><br>dicators (check hell<br>bipedon<br>stic<br>n Sulfide<br>d Layers<br>ed Below Dark Surface<br>Dark Surface<br>duck Mineral<br>Bleyed Matrix<br>tedox<br>Matrix<br>rface (LRR R, MLRA 149B) | apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br> | Matrix<br>Moist)<br>4/2<br>4/2<br><br><br><br><br>ors are r | %           100         90                       S8 - Polyv         S9 - Thin I           F1 - Loam         F2 - Loam           F3 - Deple         F6 - Redo           F6 - Redo         F7 - Deple                                                                                                                                                                                                                                                                                                                                                                                               | Torcentration, D=<br>T.5YR<br><br><br><br>t e):<br>alue Belov<br>Dark Surfa<br>y Mucky N<br>y Gleyed I<br>ated Matrix<br>x Dark Su     | Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br>v Surface (LRR R, MLRA 149B)<br>ICP (LRR R, MLRA 149B)<br>ICP (LRR R, MLRA 149B)<br>Inneral (LRR K, L)<br>Matrix<br>iface<br>Surface                               | And Grains:<br>Mottles<br>%<br><br>10<br><br><br><br><br>Indicator<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Location: PL=Pore L<br>Type<br><br>C<br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                            | Location<br><br>M<br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (e.g. clay, sand, loam)<br>clay loam<br><br><br><br><br><br><br><br>- |
| Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>8<br><br><br><br>NRCS Hydric S<br>NRCS Hydric S<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | group):<br>tion (Describe to T<br>Bottom<br>Depth<br>8<br>18<br><br><br><br><br>Soil Field In<br>A1- Histosol<br>A2 - Histic Ep<br>A3 - Black Hi<br>A4 - Hydroge<br>A5 - Stratified<br>A1 - Deplete<br>A1 - Deplete<br>A1 - Deplete<br>S1 - Sandy M<br>S4 - Sandy R<br>S5 - Sandy R<br>S6 - Stripped<br>S7 - Dark Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mesic glossaquic ha<br>the depth needed to document the indi<br>Horizon<br>1<br>2<br><br><br><br><br><br><br>dicators (check hell<br>bipedon<br>stic<br>n Sulfide<br>d Layers<br>ed Below Dark Surface<br>Dark Surface<br>duck Mineral<br>Bleyed Matrix<br>tedox<br>Matrix<br>rface (LRR R, MLRA 149B) | apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br> | Matrix<br>Moist)<br>4/2<br><br><br><br>ors are r            | %           100         90                       S8 - Polyv         S9 - Thin I           F1 - Loam         F2 - Loam           F3 - Deple         F6 - Redo           F6 - Redo         F7 - Deple                                                                                                                                                                                                                                                                                                                                                                                               | Torcentration, D=<br>T.5YR<br><br><br><br>t e):<br>alue Belov<br>Dark Surfa<br>y Mucky N<br>y Gleyed I<br>ated Matrix<br>x Dark Su     | Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br>v Surface (LRR R, MLRA 149B)<br>ICP (LRR R, MLRA 149B)<br>ICP (LRR R, MLRA 149B)<br>Inneral (LRR K, L)<br>Matrix<br>iface<br>Surface                               | Pred/Coated Sand Grains; Mottles % 10 Indicator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Location: PL=Pore L<br>Type<br><br>C<br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                            | Location<br><br>M<br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (e.g. clay, sand, loam)<br>clay loam<br><br><br><br><br><br><br><br>- |
| Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>8<br><br><br><br>NRCS Hydric S<br>NRCS Hydric S                                                                  | group):<br>tion (Describe to T<br>Bottom<br>Depth<br>8<br>18<br><br><br><br><br>Soil Field In<br>A1- Histosol<br>A2 - Histic Ep<br>A3 - Black Hi<br>A4 - Hydroge<br>A5 - Stratified<br>A1 - Deplete<br>A1 - Deplete<br>A1 - Deplete<br>S1 - Sandy M<br>S4 - Sandy R<br>S5 - Sandy R<br>S6 - Stripped<br>S7 - Dark Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mesic glossaquic ha<br>the depth needed to document the indi<br>Horizon<br>1<br>2<br><br><br><br><br><br><br>dicators (check hell<br>bipedon<br>stic<br>n Sulfide<br>d Layers<br>ed Below Dark Surface<br>Dark Surface<br>duck Mineral<br>Bleyed Matrix<br>tedox<br>Matrix<br>rface (LRR R, MLRA 149B) | apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br> | Matrix<br>Moist)<br>4/2<br><br><br><br>ors are r            | %           100         90                       S8 - Polyv         S9 - Thin I           F1 - Loam         F2 - Loam           F3 - Deple         F6 - Redo           F6 - Redo         F7 - Deple                                                                                                                                                                                                                                                                                                                                                                                               | Torcentration, D=<br>T.5YR<br><br><br><br>t e):<br>alue Belov<br>Dark Surfa<br>y Mucky N<br>y Gleyed I<br>ated Matrix<br>x Dark Su     | Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br>v Surface (LRR R, MLRA 149B)<br>ICP (LRR R, MLRA 149B)<br>ICP (LRR R, MLRA 149B)<br>Inneral (LRR K, L)<br>Matrix<br>iface<br>Surface                               | Pred/Coated Sand Grains; Mottles % 10 Indicator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Location: PL=Pore L<br>Type<br><br>C<br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                            | Location<br><br>M<br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (e.g. clay, sand, loam)<br>clay loam<br><br><br><br><br><br><br><br>- |
| Taxonomy (Sub<br>Profile Descrip<br>Top<br>Depth<br>0<br>8<br><br><br><br>NRCS Hydric S<br>NRCS Hydric S<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | group):<br>tion (Describe to T<br>Bottom<br>Depth<br>8<br>18<br><br><br><br><br>Soil Field In<br>A1- Histosol<br>A2 - Histic Ep<br>A3 - Black Hi<br>A4 - Hydroge<br>A5 - Stratified<br>A1 - Deplete<br>A1 - Deplete<br>A1 - Deplete<br>S1 - Sandy M<br>S4 - Sandy R<br>S5 - Sandy R<br>S6 - Stripped<br>S7 - Dark Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mesic glossaquic ha<br>the depth needed to document the indi<br>Horizon<br>1<br>2<br><br><br><br><br><br><br>dicators (check hell<br>bipedon<br>stic<br>n Sulfide<br>d Layers<br>ed Below Dark Surface<br>Dark Surface<br>duck Mineral<br>Bleyed Matrix<br>tedox<br>Matrix<br>rface (LRR R, MLRA 149B) | apludalf<br>cator or confirm the a<br>Color (1<br>2.5Y<br>2.5Y<br><br><br><br><br><br> | Matrix<br>Moist)<br>4/2<br><br><br><br>ors are r            | %           100         90                       S8 - Polyv         S9 - Thin I           F1 - Loam         F2 - Loam           F3 - Deple         F6 - Redo           F6 - Redo         F7 - Deple                                                                                                                                                                                                                                                                                                                                                                                               | Torcentration, D=<br>T.5YR<br><br><br><br>t e):<br>alue Belov<br>Dark Surfa<br>y Mucky N<br>y Gleyed I<br>ated Matrix<br>x Dark Su     | Depletion, RM=Reduced Matrix, CS=Cove<br>Color (Moist)<br><br>4/6<br><br><br>v Surface (LRR R, MLRA 149B)<br>ICP (LRR R, MLRA 149B)<br>ICP (LRR R, MLRA 149B)<br>Inneral (LRR K, L)<br>Matrix<br>iface<br>Surface                               | Pred/Coated Sand Grains; Mottles % 10 Indicator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Location: PL=Pore L<br>Type<br><br>C<br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                            | Location<br><br>M<br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (e.g. clay, sand, loam)<br>clay loam<br><br><br><br><br><br><br><br>- |

Page 1 of 2



#### WETLAND DETERMINATION DATA FORM

Northeast and Northcentral Region

Project/Site: VELCO BUCC New Haven Wetland ID: BUCC\_01 Sample Point P WL\_0 VEGETATION (Species identified in all uppercase are non-native species.) Tree Stratum (Plot size: 10 meter radius) Dominance Test Worksheet Species Name <u>% Cover</u> Dominant Ind.Status 1. ------2. Number of Dominant Species that are OBL, FACW, or FAC: 3 (A) 3. \_\_\_ \_\_\_ \_\_\_ \_\_\_ 4. Total Number of Dominant Species Across All Strata: 3 (B) ---------5. ------------6. Percent of Dominant Species That Are OBL, FACW, or FAC: 100.0% (A/B) ------------7 \_\_\_ 8. **Prevalence Index Worksheet** ------------9 \_\_\_ \_\_\_ ---Total % Cover of: Multiply by: ---10. OBL spp. x 1 = ---------10 10 Total Cover = x 2= FACW spp. 95 190 FAC spp. 5 x 3= 15 x 4 = Sapling/Shrub Stratum (Plot size: 5 meter radius) FACU spp. 0 0 UPL spp. x 5= 1. 0 0 2. 3. 110 ------Total (A) 215 (B) 4. ------------5 \_\_\_ Prevalence Index = B/A = 1.955 \_\_\_ \_\_\_ ---6. ------------7. ---Hydrophytic Vegetation Indicators: 8. 9 \_\_\_ Yes ∞ No Rapid Test for Hydrophytic Vegetation \_\_\_ ---10. Yes No Dominance Test is > 50% ------\_\_\_ Total Cover = 0 Yes No Prevalence Index is ≤ 3.0 \* 2 Morphological Adaptations (Explain) \* 0 Yes ∞ No Herb Stratum (Plot size: 2 meter radius) Problem Hydrophytic Vegetation (Explain) \* Yes ∞ No Y FACW 75 1 Phalaris arundinacea \* Indicators of hydric soil and wetland hydrology must be FACW 2 Onoclea sensibilis 10 y present, unless disturbed or problematic. 3 Rumex crispus 5 n FAC 10 OBL **Definitions of Vegetation Strata:** 4. Typha angustifolia Υ FACW 5. Verbena hastata 5 Ν Tree - Woody plants 3 in. (7.6cm) or more in diameter at breast height (DBH), regardless of height. 5 Ν #N/A 6 Pastinaca sativa 7. Symphotrichum lanceolatum 5 n FACW 8. ------------Sapling/Shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft. 9. ---\_\_\_ --tall. 10 ------------11. --------Herb - All herbaceous (non-woody) plants, regardless of size, and 12 \_\_\_ \_\_\_ ---\_\_\_ woody plants less than 3.28 ft. tall. 13. ------------14 \_\_\_ \_\_\_ \_\_\_ 15. ---Woody Vines - All woody vines greater than 3.28 ft. in height. Total Cover = 115 Woody Vine Stratum (Plot size: 10 meter radius) 1. ---------2. 3 Hydrophytic Vegetation Present 
 Yes 
 No ------------4 \_\_\_ \_\_\_ 5. ---------Total Cover = 0 Remarks:

Additional Remarks:

| Project/Site: 195601363                                                   | _ City/County: <u>New Haven / Addison</u> Sam     | pling Date: 10/11/2017 |
|---------------------------------------------------------------------------|---------------------------------------------------|------------------------|
| Applicant/Owner: Vermont Transco, LLC/Vermont Electric Pov                | wer Company State: Vermont Sa                     | ampling Point: Upland  |
| Investigator(s): EDB                                                      | _ Section, Township, Range:                       |                        |
| Landform (hillslope, terrace, etc.): Rise                                 | Local relief (concave, convex, none): Concave     | Slope (%): 2           |
| Subregion (LRR or MLRA): LRR R Lat: 44,122064                             | Long: <u>-73.165693</u>                           | Datum: <u>NAD83</u>    |
| Soil Map Unit Name:                                                       | NWI classification:                               | UPL                    |
| Are climatic / hydrologic conditions on the site typical for this time of | year? Yes X No (If no, explain in Remark          | ks.)                   |
| Are Vegetation X, Soil , or Hydrology significan                          | tly disturbed? Are "Normal Circumstances" preser  | nt? Yes X No           |
| Are Vegetation, Soil, or Hydrology naturally                              | problematic? (If needed, explain any answers in F | Remarks.)              |

## SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

| Hydrophytic Vegetation Present?<br>Hydric Soil Present? |                      | lo<br>Io X      | Is the Sampled Area within a Wetland? | Yes        | No X |
|---------------------------------------------------------|----------------------|-----------------|---------------------------------------|------------|------|
| Wetland Hydrology Present?                              | Yes N                | Io X            | If yes, optional Wetland Site         | ID: NH-008 |      |
| Remarks: (Explain alternative procedu                   | res here or in a sep | parate report.) |                                       |            |      |
| Significantly Disturbed Notes: T-I                      | ine row              |                 |                                       |            |      |
|                                                         |                      |                 |                                       |            |      |
|                                                         |                      |                 |                                       |            |      |
|                                                         |                      |                 |                                       |            |      |
|                                                         |                      |                 |                                       |            |      |
|                                                         |                      |                 |                                       |            |      |

| Wetland Hydrology Indicators:                                                                                                                                         | Secondary Indicators (minimum of two required)       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Primary Indicators (minimum of one is required; check all that apply)                                                                                                 | Surface Soil Cracks (B6)                             |
| Surface Water (A1) Water-Stained Leaves (B9)                                                                                                                          | Drainage Patterns (B10)                              |
| High Water Table (A2) Aquatic Fauna (B13)                                                                                                                             | Moss Trim Lines (B16)                                |
| Saturation (A3) Marl Deposits (B15)                                                                                                                                   | Dry-Season Water Table (C2)                          |
| Water Marks (B1) Hydrogen Sulfide Odor (C1)                                                                                                                           | Crayfish Burrows (C8)                                |
| Sediment Deposits (B2) Oxidized Rhizospheres on Living R                                                                                                              | Roots (C3) Saturation Visible on Aerial Imagery (C9) |
| Drift Deposits (B3) Presence of Reduced Iron (C4)                                                                                                                     | Stunted or Stressed Plants (D1)                      |
| Algal Mat or Crust (B4) Recent Iron Reduction in Tilled So                                                                                                            | bils (C6) Geomorphic Position (D2)                   |
| Iron Deposits (B5) Thin Muck Surface (C7)                                                                                                                             | Shallow Aquitard (D3)                                |
| Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)                                                                                                  | Microtopographic Relief (D4)                         |
| Sparsely Vegetated Concave Surface (B8)                                                                                                                               | FAC-Neutral Test (D5)                                |
| Field Observations:                                                                                                                                                   |                                                      |
| Surface Water Present? Yes <u>No X</u> Depth (inches):                                                                                                                |                                                      |
| V - V                                                                                                                                                                 |                                                      |
| Water Table Present? Yes <u>No X</u> Depth (inches):                                                                                                                  |                                                      |
| Saturation Present? Yes No X Depth (inches):                                                                                                                          | Wetland Hydrology Present? Yes No X                  |
|                                                                                                                                                                       |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)                                                                                           |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)                                                                                           |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect |                                                      |

# Sampling Point: Upland

| Tree Stratum (Plot size: 30')                                         | Absolute<br>% Cover | Dominant<br>Species? |      | Dominance Test worksheet:                                                                                                                                               |
|-----------------------------------------------------------------------|---------------------|----------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                     |                     |                      |      | Number of Dominant Species           That Are OBL, FACW, or FAC:         1         (A)                                                                                  |
| 2                                                                     |                     |                      |      | Total Number of Dominant<br>Species Across All Strata: 2 (B)                                                                                                            |
| 3                                                                     |                     |                      |      |                                                                                                                                                                         |
| 4<br>5                                                                |                     |                      |      | Percent of Dominant Species<br>That Are OBL, FACW, or FAC:(A/B)                                                                                                         |
| 6                                                                     |                     |                      |      |                                                                                                                                                                         |
| 7                                                                     |                     |                      |      | Prevalence Index worksheet:                                                                                                                                             |
| ·                                                                     |                     |                      |      | $\begin{array}{c c} \underline{\text{Total \% Cover of:}} & \underline{\text{Multiply by:}} \\ \text{OBL species} & \underline{0} & x 1 = \underline{0} \\ \end{array}$ |
| o 1. (o) 1 o, (o) 15'                                                 |                     | = Total Cov          | 51   | FACW species $25$ $x 2 = 50$                                                                                                                                            |
| Sapling/Shrub Stratum (Plot size: 15')                                |                     |                      |      | FAC species $0 \times 3 = 0$                                                                                                                                            |
| 1                                                                     |                     |                      |      | FACU species $80 \times 4 = 320$                                                                                                                                        |
| 2                                                                     |                     |                      |      | $\begin{array}{c} \text{PACO species} \\ \text{UPL species} \\ 0 \\ \text{x 5 = } \\ 0 \\ \end{array}$                                                                  |
| 3                                                                     |                     |                      |      |                                                                                                                                                                         |
| 4                                                                     |                     |                      |      | Column Totals: <u>105</u> (A) <u>370</u> (B)                                                                                                                            |
| 5                                                                     |                     |                      |      | Prevalence Index = $B/A = 3.5$                                                                                                                                          |
| 6                                                                     |                     |                      |      | Hydrophytic Vegetation Indicators:                                                                                                                                      |
| 7                                                                     |                     |                      |      | 1 - Rapid Test for Hydrophytic Vegetation                                                                                                                               |
|                                                                       |                     | = Total Cov          |      | 2 - Dominance Test is >50%                                                                                                                                              |
|                                                                       |                     | - 10181 000          | 51   | 3 - Prevalence Index is ≤3.0 <sup>1</sup>                                                                                                                               |
| <u>Herb Stratum</u> (Plot size: <u>5'</u> )<br>1. Solidago canadensis | 60                  | Yes                  | FACU | 4 - Morphological Adaptations <sup>1</sup> (Provide supporting data in Remarks or on a separate sheet)                                                                  |
| 2. Phalaris arundinacea                                               | 25                  | Yes                  | FACW | Problematic Hydrophytic Vegetation <sup>1</sup> (Explain)                                                                                                               |
|                                                                       | 15                  | No                   | FACU |                                                                                                                                                                         |
| Trifolium dubium                                                      | 5                   | No                   | FACU | <sup>1</sup> Indicators of hydric soil and wetland hydrology must<br>be present, unless disturbed or problematic.                                                       |
|                                                                       | ·                   |                      |      | Definitions of Vegetation Strata:                                                                                                                                       |
| 5                                                                     |                     |                      |      |                                                                                                                                                                         |
| 6                                                                     |                     |                      |      | <b>Tree</b> – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.                                                             |
| 7                                                                     |                     |                      |      |                                                                                                                                                                         |
| 8                                                                     |                     |                      |      | <b>Sapling/shrub</b> – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.                                                                |
| 9                                                                     |                     |                      |      |                                                                                                                                                                         |
| 10                                                                    |                     |                      |      | <b>Herb</b> – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.                                                           |
| 11                                                                    |                     |                      |      |                                                                                                                                                                         |
| 12                                                                    |                     |                      |      | <b>Woody vines</b> – All woody vines greater than 3.28 ft in height.                                                                                                    |
|                                                                       |                     | = Total Cov          |      | norgin.                                                                                                                                                                 |
| Wester (Distained 30)                                                 |                     |                      | 51   |                                                                                                                                                                         |
| Woody Vine Stratum (Plot size: 30')                                   |                     |                      |      |                                                                                                                                                                         |
| 1                                                                     |                     |                      |      | Hydrophytic                                                                                                                                                             |
| 2                                                                     |                     |                      |      | Vegetation                                                                                                                                                              |
| 3                                                                     |                     |                      |      | Present? Yes <u>No X</u>                                                                                                                                                |
| 4                                                                     |                     |                      |      |                                                                                                                                                                         |
|                                                                       |                     | = Total Cov          | er   |                                                                                                                                                                         |
| Remarks: (Include photo numbers here or on a separate                 | sheet.)             |                      |      | •                                                                                                                                                                       |
|                                                                       |                     |                      |      |                                                                                                                                                                         |
|                                                                       |                     |                      |      |                                                                                                                                                                         |
|                                                                       |                     |                      |      |                                                                                                                                                                         |
|                                                                       |                     |                      |      |                                                                                                                                                                         |
|                                                                       |                     |                      |      |                                                                                                                                                                         |
|                                                                       |                     |                      |      |                                                                                                                                                                         |
|                                                                       |                     |                      |      |                                                                                                                                                                         |

| Profile Desc               | ription: (Describe t   | o the dept | h needed to docu    | ment the i  | ndicator          | or confirm       | the absence of indicators.)               |                           |
|----------------------------|------------------------|------------|---------------------|-------------|-------------------|------------------|-------------------------------------------|---------------------------|
| Depth                      | Matrix                 |            | Redo                | x Features  | 6                 |                  |                                           |                           |
| (inches)                   | Color (moist)          | %          | Color (moist)       | %           | Type <sup>1</sup> | Loc <sup>2</sup> | Texture Remar                             | ks                        |
| 0 - 5                      | 10YR 4/4               | 100        |                     |             |                   |                  | Loam                                      |                           |
| 5 - 15                     | 10YR 4/3               | 95         |                     |             |                   |                  | Loam                                      |                           |
|                            |                        |            |                     |             |                   |                  |                                           |                           |
|                            |                        |            |                     |             |                   |                  |                                           |                           |
|                            |                        |            |                     |             |                   |                  |                                           |                           |
|                            |                        |            |                     |             |                   |                  |                                           |                           |
|                            |                        |            |                     |             |                   |                  | · ·                                       |                           |
|                            |                        |            |                     |             |                   |                  |                                           |                           |
|                            |                        |            |                     |             |                   |                  |                                           |                           |
|                            |                        |            |                     |             |                   |                  | · · · · · _ · _ ·                         |                           |
|                            |                        |            |                     |             |                   |                  |                                           |                           |
|                            |                        |            |                     |             |                   |                  |                                           |                           |
|                            |                        |            |                     |             |                   |                  |                                           |                           |
| ·                          |                        |            |                     |             |                   |                  |                                           |                           |
|                            |                        |            |                     |             |                   |                  |                                           |                           |
| ·                          |                        |            |                     |             |                   |                  |                                           |                           |
|                            |                        |            |                     |             |                   |                  |                                           |                           |
| <sup>1</sup> Type: C=Co    | oncentration, D=Depl   | etion, RM= | Reduced Matrix, M   | S=Masked    | Sand Gra          | ains.            | <sup>2</sup> Location: PL=Pore Lining, M= | Matrix.                   |
| Hydric Soil                | Indicators:            |            |                     |             |                   |                  | Indicators for Problematic Hyd            | ric Soils <sup>3</sup> :  |
| Histosol                   | (A1)                   | -          | Polyvalue Belo      | w Surface   | (S8) ( <b>LRF</b> | R,               | 2 cm Muck (A10) (LRR K, L,                | , <b>MLRA 149B</b> )      |
| Histic Ep                  | oipedon (A2)           |            | MLRA 149B           | )           |                   |                  | Coast Prairie Redox (A16) (L              | _RR K, L, R)              |
| Black Hi                   | stic (A3)              | -          | Thin Dark Surfa     | ace (S9) (L | RR R, ML          | RA 149B)         | 5 cm Mucky Peat or Peat (S                | 3) ( <b>LRR K, L, R</b> ) |
|                            | en Sulfide (A4)        |            | Loamy Mucky I       |             |                   | , <b>L</b> )     | Dark Surface (S7) (LRR K, L               |                           |
|                            | d Layers (A5)          | -          | Loamy Gleyed        |             | )                 |                  | Polyvalue Below Surface (S8               |                           |
| ·                          | d Below Dark Surface   | (A11)      | Depleted Matrix     |             |                   |                  | Thin Dark Surface (S9) (LRF               |                           |
|                            | ark Surface (A12)      | -          | Redox Dark Su       | , ,         |                   |                  | Iron-Manganese Masses (F1                 |                           |
|                            | lucky Mineral (S1)     | -          | Depleted Dark       |             | 7)                |                  | Piedmont Floodplain Soils (F              |                           |
|                            | Bleyed Matrix (S4)     | -          | Redox Depress       | sions (F8)  |                   |                  | Mesic Spodic (TA6) (MLRA                  | 144A, 145, 149B)          |
|                            | Redox (S5)             |            |                     |             |                   |                  | Red Parent Material (F21)                 |                           |
|                            | Matrix (S6)            |            |                     |             |                   |                  | Very Shallow Dark Surface (               | TF12)                     |
| Dark Su                    | rface (S7) (LRR R, M   | LRA 149B   | )                   |             |                   |                  | Other (Explain in Remarks)                |                           |
| <sup>3</sup> Indiantora of | f hydrophytic vegetati | on and wat | land hydrology my   | at he proce | nt unloco         | dicturbod        | or problematic                            |                           |
|                            | Layer (if observed):   |            | liand hydrology mus | st be prese | ni, uness         | uistui beu       |                                           |                           |
|                            |                        |            |                     |             |                   |                  |                                           |                           |
| Type: <u>Ha</u>            |                        |            |                     |             |                   |                  |                                           | V                         |
| Depth (ind                 | ches): <u>15</u>       |            |                     |             |                   |                  | Hydric Soil Present? Yes                  | <u>No X</u>               |
| Remarks:                   |                        |            |                     |             |                   |                  |                                           |                           |
|                            |                        |            |                     |             |                   |                  |                                           |                           |
|                            |                        |            |                     |             |                   |                  |                                           |                           |
|                            |                        |            |                     |             |                   |                  |                                           |                           |
|                            |                        |            |                     |             |                   |                  |                                           |                           |
|                            |                        |            |                     |             |                   |                  |                                           |                           |
|                            |                        |            |                     |             |                   |                  |                                           |                           |
|                            |                        |            |                     |             |                   |                  |                                           |                           |
|                            |                        |            |                     |             |                   |                  |                                           |                           |
|                            |                        |            |                     |             |                   |                  |                                           |                           |
|                            |                        |            |                     |             |                   |                  |                                           |                           |
|                            |                        |            |                     |             |                   |                  |                                           |                           |
|                            |                        |            |                     |             |                   |                  |                                           |                           |
|                            |                        |            |                     |             |                   |                  |                                           |                           |
|                            |                        |            |                     |             |                   |                  |                                           |                           |
|                            |                        |            |                     |             |                   |                  |                                           |                           |
|                            |                        |            |                     |             |                   |                  |                                           |                           |
|                            |                        |            |                     |             |                   |                  |                                           |                           |
|                            |                        |            |                     |             |                   |                  |                                           |                           |

| Project/Site: 195601363                                                   | City/County: <u>New Haven / Addison</u> S      | ampling Date: 10/11/2017 |
|---------------------------------------------------------------------------|------------------------------------------------|--------------------------|
| Applicant/Owner: Vermont Transco, LLC/Vermont Electric Po                 | wer Company State: Vermont                     | Sampling Point: Wetland  |
| Investigator(s): RDK                                                      | Section, Township, Range:                      |                          |
| Landform (hillslope, terrace, etc.): Depression                           | Local relief (concave, convex, none): Convex   | Slope (%): <u>3-8</u>    |
| Subregion (LRR or MLRA): LRR R Lat: 44.122197                             | Long: <u>-73.16564</u>                         | Datum:NAD83              |
| Soil Map Unit Name:                                                       | NWI classificati                               | on: PEM                  |
| Are climatic / hydrologic conditions on the site typical for this time of | f year? Yes X No (If no, explain in Ren        | narks.)                  |
| Are Vegetation X, Soil , or Hydrology significar                          | ntly disturbed? Are "Normal Circumstances" pre | sent? Yes X No           |
| Are Vegetation, Soil, or Hydrology naturally                              | problematic? (If needed, explain any answers   | in Remarks.)             |

## SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

| Hydrophytic Vegetation Present?<br>Hydric Soil Present?<br>Wetland Hydrology Present? | Yes X No<br>Yes X No<br>Yes X No     | Is the Sampled Area<br>within a Wetland? Yes X No<br>If yes, optional Wetland Site ID: <u>NH-008</u> |
|---------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------|
| Remarks: (Explain alternative proceed                                                 | dures here or in a separate report.) |                                                                                                      |
| Significantly Disturbed Notes: T                                                      | ransmission row                      |                                                                                                      |
|                                                                                       |                                      |                                                                                                      |
|                                                                                       |                                      |                                                                                                      |
|                                                                                       |                                      |                                                                                                      |
|                                                                                       |                                      |                                                                                                      |
|                                                                                       |                                      |                                                                                                      |

| Wetland Hydrology Indicators:         Secondary Indicators (minimum of two requi                             | red) |
|--------------------------------------------------------------------------------------------------------------|------|
| Primary Indicators (minimum of one is required; check all that apply) Surface Soil Cracks (B6)               |      |
| Surface Water (A1) Water-Stained Leaves (B9) Drainage Patterns (B10)                                         |      |
| High Water Table (A2) Aquatic Fauna (B13) Moss Trim Lines (B16)                                              |      |
| Saturation (A3) Marl Deposits (B15) Dry-Season Water Table (C2)                                              |      |
| Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8)                                            |      |
| Sediment Deposits (B2) X Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9 | ))   |
| Drift Deposits (B3) X Presence of Reduced Iron (C4) X Stunted or Stressed Plants (D1)                        |      |
| Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2)                  |      |
| Iron Deposits (B5) Thin Muck Surface (C7) X Shallow Aquitard (D3)                                            |      |
| Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Microtopographic Relief (D4)            |      |
| Sparsely Vegetated Concave Surface (B8) FAC-Neutral Test (D5)                                                |      |
| Field Observations:                                                                                          |      |
| Surface Water Present? Yes NoX_ Depth (inches):                                                              |      |
| Water Table Present? Yes NoX Depth (inches):                                                                 |      |
| Saturation Present? Yes No X Depth (inches): Wetland Hydrology Present? Yes X No                             |      |
| (includes capillary fringe)                                                                                  |      |
| Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:   |      |
|                                                                                                              |      |
| Remarks:                                                                                                     |      |
|                                                                                                              |      |
|                                                                                                              |      |
|                                                                                                              |      |
|                                                                                                              |      |
|                                                                                                              |      |
|                                                                                                              |      |
|                                                                                                              |      |
|                                                                                                              |      |
|                                                                                                              |      |
|                                                                                                              |      |

## Sampling Point: Wetland

| Tree Stratum (Plot size: 30'                                           | Absolute | Dominant Indicat | Dominance Lest Worksheet'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------|----------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                        |          | Species? Statu   | Number of Dominant Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1                                                                      |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2                                                                      |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3                                                                      |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4                                                                      |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5                                                                      |          | ,                | That Are OBL, FACW, or FAC: 100% (A/B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6                                                                      |          |                  | Prevalence Index worksheet:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7                                                                      |          |                  | Total % Cover of:Multiply by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                        |          | = Total Cover    | OBL species x 1 =0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sapling/Shrub Stratum (Plot size: 15')                                 |          |                  | FACW species 100 x 2 = 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1                                                                      |          |                  | FAC species x 3 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2                                                                      |          |                  | FACU species x 4 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3                                                                      |          |                  | UPL species $0 \times 5 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                        |          |                  | Column Totals: <u>100</u> (A) <u>200</u> (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4                                                                      |          |                  | Prevalence Index = B/A = 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5                                                                      |          |                  | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6                                                                      |          |                  | <ul> <li>Hydrophytic Vegetation Indicators:</li> <li>X 1 - Rapid Test for Hydrophytic Vegetation</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7                                                                      |          | <u> </u>         | $\frac{X}{X} = - \frac{1}{2} \frac{1}{2} - \frac{1}{2} \frac{1}{2$ |
|                                                                        |          | = Total Cover    | $\frac{X}{X}$ 3 - Prevalence Index is $\leq 3.0^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <u>Herb Stratum</u> (Plot size: <u>5'</u> )<br>1. Phalaris arundinacea | 100      | Yes FAC          | 4 - Morphological Adaptations <sup>1</sup> (Provide supporting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                        |          |                  | M data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation <sup>1</sup> (Explain)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2                                                                      |          |                  | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3                                                                      |          | ·                | Indicators of hydric soil and wetland hydrology must<br>be present, unless disturbed or problematic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4                                                                      |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5                                                                      |          | ,                | Definitions of Vegetation Strata:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6                                                                      |          |                  | <b>Tree</b> – Woody plants 3 in. (7.6 cm) or more in diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7                                                                      |          |                  | at breast height (DBH), regardless of height.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8                                                                      |          |                  | Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 9                                                                      |          |                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10                                                                     |          |                  | Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 11                                                                     |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12.                                                                    |          |                  | Woody vines – All woody vines greater than 3.28 ft in height.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                        | 100      | = Total Cover    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Woody Vine Stratum (Plot size: 30' )                                   |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| · · · · · · · · · · · · · · · · · · ·                                  |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                                                                      |          |                  | — Hydrophytic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2                                                                      |          | ·                | — Vegetation<br>Present? Yes X No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3                                                                      |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4                                                                      |          | ·                | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                        |          | = Total Cover    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Remarks: (Include photo numbers here or on a separate                  | sheet.)  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                        |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                        |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                        |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                        |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                        |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                        |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                        |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Profile Desc              | ription: (Describe t             | o the dep  | th needed to docun            | nent the i | indicator         | or confirm       | the absence of in                 | ndicators.)                                                     |            |  |
|---------------------------|----------------------------------|------------|-------------------------------|------------|-------------------|------------------|-----------------------------------|-----------------------------------------------------------------|------------|--|
| Depth                     | Matrix                           |            | Redo                          | x Feature  | <u>s</u> .        |                  |                                   |                                                                 |            |  |
| (inches)                  | Color (moist)                    | %          | Color (moist)                 | %          | Type <sup>1</sup> | Loc <sup>2</sup> | Texture                           | Remarks                                                         |            |  |
| 0 - 8                     | 10YR 3/2                         | 100        |                               |            |                   | . <u> </u>       | Loam                              |                                                                 |            |  |
| 8 - 12                    | 2.5Y 4/1                         | 98         | 10YR 4/4                      | 2          | Co                | Ma               | Silt Loam                         |                                                                 |            |  |
|                           |                                  |            |                               |            |                   |                  |                                   |                                                                 |            |  |
|                           |                                  |            |                               |            |                   | ·                | ,                                 |                                                                 |            |  |
|                           |                                  |            |                               |            |                   |                  |                                   |                                                                 |            |  |
|                           |                                  |            |                               |            |                   |                  |                                   |                                                                 |            |  |
|                           |                                  |            |                               |            |                   |                  |                                   |                                                                 |            |  |
|                           |                                  |            |                               |            |                   |                  |                                   |                                                                 |            |  |
|                           |                                  |            |                               |            |                   |                  |                                   |                                                                 |            |  |
|                           |                                  |            |                               |            |                   |                  |                                   |                                                                 |            |  |
|                           |                                  |            |                               |            |                   |                  |                                   |                                                                 |            |  |
|                           |                                  |            |                               |            |                   | ·                |                                   |                                                                 |            |  |
|                           |                                  |            |                               |            |                   |                  |                                   |                                                                 |            |  |
|                           |                                  |            |                               |            |                   |                  |                                   |                                                                 |            |  |
|                           |                                  |            |                               |            |                   |                  |                                   |                                                                 |            |  |
| 1                         |                                  |            |                               |            |                   |                  |                                   |                                                                 |            |  |
| Type: C=Co<br>Hydric Soil | oncentration, D=Deple            | etion, RM= | Reduced Matrix, MS            | S=Masked   | d Sand Gra        | ains.            |                                   | _=Pore Lining, M=Matrix<br>Problematic Hydric So                |            |  |
| -                         |                                  |            | Debuglue Delev                | . Curfaga  |                   |                  |                                   | -                                                               |            |  |
| <u> </u>                  | (AT)<br>bipedon (A2)             |            | Polyvalue Belov<br>MLRA 149B) |            | (58) ( <b>LRF</b> | KR,              |                                   | (A10) ( <b>LRR K, L, MLR/</b><br>rie Redox (A16) ( <b>LRR K</b> |            |  |
|                           | stic (A3)                        |            | Thin Dark Surfa               |            | RR R. MI          | <b>RA 149B</b> ) |                                   | y Peat or Peat (S3) (LR                                         |            |  |
|                           | en Sulfide (A4)                  |            | Loamy Mucky M                 |            |                   |                  |                                   | ce (S7) (LRR K, L, M)                                           | , , ,      |  |
|                           | d Layers (A5)                    |            | Loamy Gleyed I                |            | 2)                |                  |                                   | Below Surface (S8) (LRI                                         |            |  |
| ·                         | d Below Dark Surface             | (A11)      | X Depleted Matrix             | . ,        |                   |                  | Thin Dark Surface (S9) (LRR K, L) |                                                                 |            |  |
|                           | ark Surface (A12)                |            | Redox Dark Su                 | , ,        |                   |                  |                                   | anese Masses (F12) (LR                                          |            |  |
|                           | lucky Mineral (S1)               |            | Depleted Dark S               |            | -7)               |                  |                                   | Floodplain Soils (F19) (N                                       |            |  |
| -                         | Bleyed Matrix (S4)<br>Redox (S5) |            | Redox Depress                 | 10115 (FO) |                   |                  |                                   | dic (TA6) ( <b>MLRA 144A</b> ,<br>t Material (F21)              | 145, 149D) |  |
| -                         | Matrix (S6)                      |            |                               |            |                   |                  |                                   | ow Dark Surface (TF12)                                          |            |  |
|                           | rface (S7) (LRR R, M             | LRA 149E   | 3)                            |            |                   |                  |                                   | lain in Remarks)                                                |            |  |
|                           |                                  |            | ,                             |            |                   |                  |                                   | ,                                                               |            |  |
|                           | f hydrophytic vegetati           | on and we  | tland hydrology mus           | t be prese | ent, unless       | disturbed of     | or problematic.                   |                                                                 |            |  |
|                           | Layer (if observed):             |            |                               |            |                   |                  |                                   |                                                                 |            |  |
|                           | assive dense                     |            |                               |            |                   |                  |                                   |                                                                 |            |  |
| Depth (in                 | ches): <u>8</u>                  |            |                               |            |                   |                  | Hydric Soil Pres                  | sent? Yes <u>X</u>                                              | No         |  |
| Remarks:                  |                                  |            |                               |            |                   |                  |                                   |                                                                 |            |  |
| HSI: F3b                  |                                  |            |                               |            |                   |                  |                                   |                                                                 |            |  |
|                           |                                  |            |                               |            |                   |                  |                                   |                                                                 |            |  |
|                           |                                  |            |                               |            |                   |                  |                                   |                                                                 |            |  |
|                           |                                  |            |                               |            |                   |                  |                                   |                                                                 |            |  |
|                           |                                  |            |                               |            |                   |                  |                                   |                                                                 |            |  |
|                           |                                  |            |                               |            |                   |                  |                                   |                                                                 |            |  |
|                           |                                  |            |                               |            |                   |                  |                                   |                                                                 |            |  |
|                           |                                  |            |                               |            |                   |                  |                                   |                                                                 |            |  |
|                           |                                  |            |                               |            |                   |                  |                                   |                                                                 |            |  |
|                           |                                  |            |                               |            |                   |                  |                                   |                                                                 |            |  |
|                           |                                  |            |                               |            |                   |                  |                                   |                                                                 |            |  |
|                           |                                  |            |                               |            |                   |                  |                                   |                                                                 |            |  |
|                           |                                  |            |                               |            |                   |                  |                                   |                                                                 |            |  |
|                           |                                  |            |                               |            |                   |                  |                                   |                                                                 |            |  |
|                           |                                  |            |                               |            |                   |                  |                                   |                                                                 |            |  |
|                           |                                  |            |                               |            |                   |                  |                                   |                                                                 |            |  |

| Project/Site: 195601363                                                                         | City/County: New Haven / Addison              | Sampling Date: 10/11/2017 |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------|
| Applicant/Owner: Vermont Transco, LLC/Vermont Electric Po                                       | ower Company State: Vermont                   | Sampling Point: Upland    |
| Investigator(s): EDB                                                                            | Section, Township, Range:                     |                           |
| Landform (hillslope, terrace, etc.): Rise                                                       | Local relief (concave, convex, none): Concave | Slope (%): 2              |
| Subregion (LRR or MLRA): LRR R Lat: 44.12133                                                    | Long: <u>-73.16536</u>                        | Datum:NAD83               |
| Soil Map Unit Name:                                                                             | NWI classifica                                | ation: UPL                |
| Are climatic / hydrologic conditions on the site typical for this time of                       | f year? Yes $X$ No (If no, explain in Re      | emarks.)                  |
| Are Vegetation $\underline{X}$ , Soil $\underline{X}$ , or Hydrology $\underline{X}$ significar | ntly disturbed? Are "Normal Circumstances" pr | resent? Yes X No          |
| Are Vegetation, Soil, or Hydrology naturally                                                    | problematic? (If needed, explain any answer   | s in Remarks.)            |

## SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

| Hydrophytic Vegetation Present?<br>Hydric Soil Present?                 | Yes No X<br>Yes No X                 | Is the Sampled Area<br>within a Wetland? Yes No X |  |  |  |  |
|-------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------|--|--|--|--|
| Wetland Hydrology Present?                                              | Yes No X                             | If yes, optional Wetland Site ID: NH-009          |  |  |  |  |
| Remarks: (Explain alternative procedures here or in a separate report.) |                                      |                                                   |  |  |  |  |
| Significantly Disturbed Notes: A                                        | djacent to road, t-line pole fill, a | and septic mound                                  |  |  |  |  |
|                                                                         |                                      |                                                   |  |  |  |  |
|                                                                         |                                      |                                                   |  |  |  |  |
|                                                                         |                                      |                                                   |  |  |  |  |
|                                                                         |                                      |                                                   |  |  |  |  |

| Wetland Hydrology Indicators:                                                                                                                                         | Secondary Indicators (minimum of two required)       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Primary Indicators (minimum of one is required; check all that apply)                                                                                                 | Surface Soil Cracks (B6)                             |
| Surface Water (A1) Water-Stained Leaves (B9)                                                                                                                          | Drainage Patterns (B10)                              |
| High Water Table (A2) Aquatic Fauna (B13)                                                                                                                             | Moss Trim Lines (B16)                                |
| Saturation (A3) Marl Deposits (B15)                                                                                                                                   | Dry-Season Water Table (C2)                          |
| Water Marks (B1) Hydrogen Sulfide Odor (C1)                                                                                                                           | Crayfish Burrows (C8)                                |
| Sediment Deposits (B2) Oxidized Rhizospheres on Living I                                                                                                              | Roots (C3) Saturation Visible on Aerial Imagery (C9) |
| Drift Deposits (B3) Presence of Reduced Iron (C4)                                                                                                                     | Stunted or Stressed Plants (D1)                      |
| Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Sc                                                                                                            | bils (C6) Geomorphic Position (D2)                   |
| Iron Deposits (B5) Thin Muck Surface (C7)                                                                                                                             | Shallow Aquitard (D3)                                |
| Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)                                                                                                  | Microtopographic Relief (D4)                         |
| Sparsely Vegetated Concave Surface (B8)                                                                                                                               | FAC-Neutral Test (D5)                                |
| Field Observations:                                                                                                                                                   |                                                      |
| Surface Water Present? Yes <u>No X</u> Depth (inches):                                                                                                                |                                                      |
| Water Table Present? Yes NoX Depth (inches):                                                                                                                          |                                                      |
|                                                                                                                                                                       |                                                      |
| Saturation Present? Yes No X Depth (inches):                                                                                                                          | Wetland Hydrology Present? Yes No X                  |
|                                                                                                                                                                       | ······································               |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)                                                                                           | ······································               |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)                                                                                           | ······································               |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)                                                                                           | ······································               |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect | ······································               |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect | ······································               |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect | ······································               |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect | ······································               |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect | ······································               |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect | ······································               |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect | ······································               |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect | ······································               |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect | ······································               |

# Sampling Point: Upland

|                                                                       | Absolute | Dominant     |        | Dominance Test worksheet:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------|----------|--------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tree Stratum (Plot size: 30')                                         | % Cover  | Species?     | Status | Number of Dominant Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1                                                                     |          |              |        | That Are OBL, FACW, or FAC: 0 (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2                                                                     |          |              |        | Total Number of Dominant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3                                                                     |          |              |        | Species Across All Strata: 2 (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                       |          |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4                                                                     |          |              |        | Percent of Dominant Species<br>That Are OBL_EACW_or_EAC: 0% (A/B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5                                                                     |          |              |        | That Are OBL, FACW, or FAC:(A/B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6                                                                     |          |              |        | Prevalence Index worksheet:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7                                                                     |          |              |        | Total % Cover of: Multiply by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                       |          | = Total Cove |        | $\begin{array}{c} \hline \hline \\ OBL species \\ \hline \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \hline \\ 0 \\ x \\ 1 \\ \end{array} \\ \begin{array}{c} \hline \\ x \\ 1 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} \hline \\ x \\ 1 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\$ |
| 15'                                                                   |          |              | 51     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sapling/Shrub Stratum (Plot size: 15')                                |          |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1                                                                     |          |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2                                                                     |          |              |        | FACU species $110$ x 4 = $440$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3                                                                     |          |              |        | UPL species $0 \times 5 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                       |          |              |        | Column Totals: <u>135</u> (A) <u>515</u> (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4                                                                     |          |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5                                                                     |          |              |        | Prevalence Index = B/A = 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6                                                                     |          |              |        | Hydrophytic Vegetation Indicators:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7                                                                     |          |              |        | 1 - Rapid Test for Hydrophytic Vegetation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| /                                                                     |          |              |        | 2 - Dominance Test is >50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                       |          | = Total Cove | er     | 3 - Prevalence Index is ≤3.0 <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <u>Herb Stratum</u> (Plot size: <u>5'</u> )<br>1. Solidago canadensis | 75       | Yes          | FACU   | 4 - Morphological Adaptations <sup>1</sup> (Provide supporting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                       |          |              |        | data in Remarks or on a separate sheet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2. Poa pratensis                                                      | 35       | Yes          | FACU   | Problematic Hydrophytic Vegetation <sup>1</sup> (Explain)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3. Symphyotrichum lateriflorum                                        | 25       | No           | FAC    | <sup>1</sup> Indicators of hydric soil and wetland hydrology must                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4                                                                     |          |              |        | be present, unless disturbed or problematic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                       |          |              |        | Definitions of Vegetation Strata:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5                                                                     |          |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6                                                                     |          |              |        | <b>Tree</b> – Woody plants 3 in. (7.6 cm) or more in diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7                                                                     |          |              |        | at breast height (DBH), regardless of height.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8                                                                     |          |              |        | Sapling/shrub – Woody plants less than 3 in. DBH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 9                                                                     |          |              |        | and greater than or equal to 3.28 ft (1 m) tall.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                       |          |              |        | Herb – All herbaceous (non-woody) plants, regardless of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10                                                                    |          |              |        | size, and woody plants less than 3.28 ft tall.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 11                                                                    |          |              |        | <b>Woody vines</b> – All woody vines greater than 3.28 ft in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 12                                                                    |          |              |        | height.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                       | 135      | = Total Cove | ۶r     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Woody Vine Stratum (Plot size: 30' )                                  |          |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (Plot size:)                                                          |          |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1                                                                     |          |              |        | Under shotte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2                                                                     |          |              |        | Hydrophytic<br>Vegetation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3                                                                     |          |              |        | Present? Yes No X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                       |          |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4                                                                     |          |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                       |          | = Total Cove | er     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Remarks: (Include photo numbers here or on a separate                 | sheet.)  |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                       |          |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                       |          |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                       |          |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                       |          |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                       |          |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                       |          |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                       |          |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                       |          |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Profile Desc       | cription: (Describe t                 | o the dept | h needed to docur               | nent the i | ndicator o        | or confirn       | m the absence of indicators.)                                                                              |
|--------------------|---------------------------------------|------------|---------------------------------|------------|-------------------|------------------|------------------------------------------------------------------------------------------------------------|
| Depth              | Matrix                                |            | Redo                            | x Feature  | <u>S</u> 1        | . 2              |                                                                                                            |
| (inches)           | Color (moist)                         | %          | Color (moist)                   | %          | Type <sup>1</sup> | Loc <sup>2</sup> | Texture Remarks                                                                                            |
| 0 - 5              | 10YR 4/4                              | 100        |                                 |            |                   |                  | F. Sandy Loam                                                                                              |
| 5 - 13             | 10YR 4/3                              | 90         |                                 |            |                   |                  | F. Sandy Loam                                                                                              |
| 13 - 20            | 10YR 4/2                              | 90         | 10YR 4/6                        | 2          | Со                | Ma               | F. Sandy Loam                                                                                              |
|                    |                                       |            |                                 |            |                   |                  |                                                                                                            |
|                    |                                       |            |                                 |            |                   |                  |                                                                                                            |
|                    |                                       |            |                                 |            |                   |                  |                                                                                                            |
|                    |                                       |            |                                 |            |                   |                  |                                                                                                            |
|                    |                                       |            |                                 |            |                   |                  |                                                                                                            |
|                    |                                       |            |                                 |            |                   |                  |                                                                                                            |
|                    |                                       |            |                                 |            |                   |                  |                                                                                                            |
|                    |                                       |            |                                 |            |                   |                  |                                                                                                            |
|                    |                                       |            |                                 |            |                   |                  |                                                                                                            |
|                    |                                       |            |                                 |            |                   |                  |                                                                                                            |
|                    |                                       |            |                                 |            |                   |                  |                                                                                                            |
|                    | oncentration, D=Depl                  | etion, RM= | Reduced Matrix, MS              | S=Masked   | Sand Gra          | ins.             | <sup>2</sup> Location: PL=Pore Lining, M=Matrix.                                                           |
| Hydric Soil        |                                       |            |                                 | . Curfaga  |                   | В                | Indicators for Problematic Hydric Soils <sup>3</sup> :                                                     |
| Histosol           | oipedon (A2)                          | -          | Polyvalue Belov<br>MLRA 149B    |            | (30) (LKK         | . к,             | <ul> <li>2 cm Muck (A10) (LRR K, L, MLRA 149B)</li> <li>Coast Prairie Redox (A16) (LRR K, L, R)</li> </ul> |
|                    | stic (A3)                             | -          | Thin Dark Surfa                 |            | .RR R, ML         | RA 149B          |                                                                                                            |
|                    | en Sulfide (A4)                       | -          | Loamy Mucky N                   |            |                   | L)               | Dark Surface (S7) (LRR K, L, M)                                                                            |
|                    | d Layers (A5)<br>d Below Dark Surface | -<br>(A11) | Loamy Gleyed<br>Depleted Matrix |            | )                 |                  | Polyvalue Below Surface (S8) (LRR K, L)<br>Thin Dark Surface (S9) (LRR K, L)                               |
| ·                  | ark Surface (A12)                     |            | Redox Dark Su                   |            |                   |                  | Iron-Manganese Masses (F12) (LRR K, L, R)                                                                  |
| Sandy M            | lucky Mineral (S1)                    | -          | Depleted Dark                   | Surface (F |                   |                  | Piedmont Floodplain Soils (F19) (MLRA 149E                                                                 |
|                    | Bleyed Matrix (S4)                    | -          | Redox Depress                   | ions (F8)  |                   |                  | Mesic Spodic (TA6) ( <b>MLRA 144A, 145, 149B</b>                                                           |
|                    | Redox (S5)<br>I Matrix (S6)           |            |                                 |            |                   |                  | Red Parent Material (F21)<br>Very Shallow Dark Surface (TF12)                                              |
|                    | rface (S7) (LRR R, M                  | LRA 149B   | )                               |            |                   |                  | Other (Explain in Remarks)                                                                                 |
|                    |                                       |            |                                 |            |                   |                  |                                                                                                            |
|                    | f hydrophytic vegetati                | on and wet | land hydrology mus              | t be prese | ent, unless       | disturbed        | d or problematic.                                                                                          |
|                    | Layer (if observed):                  |            |                                 |            |                   |                  |                                                                                                            |
| Type:<br>Depth (in | ches):                                |            |                                 |            |                   |                  | Hydric Soil Present? Yes No <u>X</u>                                                                       |
| Remarks:           |                                       |            |                                 |            |                   |                  |                                                                                                            |
|                    |                                       |            |                                 |            |                   |                  |                                                                                                            |
|                    |                                       |            |                                 |            |                   |                  |                                                                                                            |
|                    |                                       |            |                                 |            |                   |                  |                                                                                                            |
|                    |                                       |            |                                 |            |                   |                  |                                                                                                            |
|                    |                                       |            |                                 |            |                   |                  |                                                                                                            |
|                    |                                       |            |                                 |            |                   |                  |                                                                                                            |
|                    |                                       |            |                                 |            |                   |                  |                                                                                                            |
|                    |                                       |            |                                 |            |                   |                  |                                                                                                            |
|                    |                                       |            |                                 |            |                   |                  |                                                                                                            |
|                    |                                       |            |                                 |            |                   |                  |                                                                                                            |
|                    |                                       |            |                                 |            |                   |                  |                                                                                                            |
|                    |                                       |            |                                 |            |                   |                  |                                                                                                            |
|                    |                                       |            |                                 |            |                   |                  |                                                                                                            |
|                    |                                       |            |                                 |            |                   |                  |                                                                                                            |
|                    |                                       |            |                                 |            |                   |                  |                                                                                                            |

| Project/Site: 195601363                                                   | City/County: <u>New Haven / Addison</u> s      | Campling Date: 10/11/2017 |
|---------------------------------------------------------------------------|------------------------------------------------|---------------------------|
| Applicant/Owner: Vermont Transco, LLC/Vermont Electric Po                 | wer Company State: Vermont                     | Sampling Point: Wetland   |
| Investigator(s): <u>RDK</u>                                               | Section, Township, Range:                      |                           |
| Landform (hillslope, terrace, etc.): Depression                           | Local relief (concave, convex, none): Concave  | Slope (%): 0-3            |
| Subregion (LRR or MLRA): LRR R Lat: 44.1213                               | Long: -73.165196                               | Datum:NAD83               |
| Soil Map Unit Name:                                                       | NWI classificati                               | ion: PSS                  |
| Are climatic / hydrologic conditions on the site typical for this time of | f year? Yes X No (If no, explain in Ren        | narks.)                   |
| Are Vegetation $X$ , Soil $X$ , or Hydrology $X$ significar               | ntly disturbed? Are "Normal Circumstances" pre | esent? Yes X No           |
| Are Vegetation, Soil, or Hydrology naturally                              | problematic? (If needed, explain any answers   | in Remarks.)              |

## SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

| Hydrophytic Vegetation Present?<br>Hydric Soil Present?<br>Wetland Hydrology Present?                                      | Yes X No<br>Yes X No<br>Yes X No | Is the Sampled Area<br>within a Wetland? Yes X No<br>If yes, optional Wetland Site ID: <u>NH-009</u> |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|--|
| Remarks: (Explain alternative procedures here or in a separate report.)<br>Significantly Disturbed Notes: Transmission row |                                  |                                                                                                      |  |  |  |  |
| 5 ,                                                                                                                        |                                  |                                                                                                      |  |  |  |  |
|                                                                                                                            |                                  |                                                                                                      |  |  |  |  |
|                                                                                                                            |                                  |                                                                                                      |  |  |  |  |

| Wetland Hydrology Indicators:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Secondary Indicators (minimum of two required)                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Primary Indicators (minimum of one is required; check all that apply)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Surface Soil Cracks (B6)                                                              |
| Surface Water (A1) Water-Stained Leaves (B9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | X Drainage Patterns (B10)                                                             |
| High Water Table (A2) Aquatic Fauna (B13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Moss Trim Lines (B16)                                                                 |
| Saturation (A3) Marl Deposits (B15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dry-Season Water Table (C2)                                                           |
| Water Marks (B1) Hydrogen Sulfide Odor (C1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Crayfish Burrows (C8)                                                                 |
| Sediment Deposits (B2) <u>X</u> Oxidized Rhizospheres on Living                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Roots (C3) Saturation Visible on Aerial Imagery (C9)                                  |
| Drift Deposits (B3) X Presence of Reduced Iron (C4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stunted or Stressed Plants (D1)                                                       |
| Algal Mat or Crust (B4) Recent Iron Reduction in Tilled S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oils (C6) $\underline{X}$ Stunted or Stressed Plants (D1)<br>Geomorphic Position (D2) |
| Iron Deposits (B5) Thin Muck Surface (C7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Shallow Aquitard (D3)                                                                 |
| Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X Microtopographic Relief (D4)                                                        |
| Sparsely Vegetated Concave Surface (B8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FAC-Neutral Test (D5)                                                                 |
| Field Observations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                       |
| Surface Water Present? Yes <u>No X</u> Depth (inches):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                       |
| Water Table Present? Yes <u>No X</u> Depth (inches):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                       |
| Saturation Present? Yes <u>No X</u> Depth (inches):<br>(includes capillary fringe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wetland Hydrology Present? Yes X No                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                       |
| Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ctions), if available:                                                                |
| Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspective stream of the stream of | ctions), if available:                                                                |
| Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ctions), if available:                                                                |
| Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspective Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ctions), if available:                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ctions), if available:                                                                |

# Sampling Point: Wetland

| EGETATION - Use scientific names of plan            | 15.                 |                      |      | Sampling Point. Wethend                                                                                    |
|-----------------------------------------------------|---------------------|----------------------|------|------------------------------------------------------------------------------------------------------------|
| Tree Stratum (Plot size: 30' )                      | Absolute<br>% Cover | Dominant<br>Species? |      | Dominance Test worksheet:                                                                                  |
| 1                                                   |                     |                      |      | Number of Dominant Species<br>That Are OBL, FACW, or FAC: 3 (A)                                            |
| 2                                                   |                     |                      |      |                                                                                                            |
| 3                                                   |                     |                      |      | Total Number of Dominant<br>Species Across All Strata: 5 (B)                                               |
| 4                                                   |                     |                      |      |                                                                                                            |
|                                                     |                     |                      |      | Percent of Dominant Species<br>That Are OBL, FACW, or FAC:60% (A/B                                         |
| 5                                                   |                     |                      |      |                                                                                                            |
| 6                                                   |                     |                      |      | Prevalence Index worksheet:                                                                                |
| 7                                                   |                     |                      |      | Total % Cover of: Multiply by:                                                                             |
| 15'                                                 |                     | = Total Cov          | er   | OBL species0 $x 1 = 0$ FACW species75 $x 2 = 150$                                                          |
| Sapling/Shrub Stratum (Plot size: 15')              | 20                  | Vee                  |      | FAC species $5$ $x_3 = 15$                                                                                 |
| 1. Cornus amomum                                    |                     | Yes                  | FACW | FACU species $55 \times 4 = 220$                                                                           |
| 2. Viburnum nudum                                   |                     | Yes                  | FACW | $\begin{array}{c} \text{UPL species} \\ 0 \\ \text{x 5} = \\ 0 \\ \end{array}$                             |
| 3. Lonicera morrowii                                |                     | Yes                  | FACU | Column Totals: 135 (A) 385 (B)                                                                             |
| <sub>4.</sub> Rhamnus cathartica                    | 5                   | No                   | FAC  |                                                                                                            |
| 5                                                   |                     |                      |      | Prevalence Index = B/A = 2.9                                                                               |
| 6                                                   |                     |                      |      | Hydrophytic Vegetation Indicators:                                                                         |
| 7                                                   |                     |                      |      | 1 - Rapid Test for Hydrophytic Vegetation                                                                  |
|                                                     | 80                  | = Total Cov          | er   | $\frac{X}{X}$ 2 - Dominance Test is >50%                                                                   |
| Herb Stratum (Plot size: 5')                        |                     |                      |      | X 3 - Prevalence Index is ≤3.0 <sup>1</sup>                                                                |
| 1. Agrimonia rostellata                             | 25                  | Yes                  | FACU | 4 - Morphological Adaptations <sup>1</sup> (Provide supportin data in Remarks or on a separate sheet)      |
| 2. Verbena hastata                                  | 20                  | Yes                  | FACW | Problematic Hydrophytic Vegetation <sup>1</sup> (Explain)                                                  |
| 3. Solidago canadensis                              | 10                  | No                   | FACU | <sup>1</sup> Indicators of hydric soil and wetland hydrology must                                          |
|                                                     |                     |                      |      | be present, unless disturbed or problematic.                                                               |
| ۶                                                   |                     |                      |      | Definitions of Vegetation Strata:                                                                          |
| 5                                                   |                     |                      |      |                                                                                                            |
| 6                                                   |                     |                      |      | <b>Tree</b> – Woody plants 3 in. (7.6 cm) or more in diamete at breast height (DBH), regardless of height. |
| 7                                                   |                     |                      |      | Sapling/shrub – Woody plants less than 3 in. DBH                                                           |
| 8                                                   |                     |                      |      | and greater than or equal to 3.28 ft (1 m) tall.                                                           |
| 9                                                   |                     |                      |      | Herb – All herbaceous (non-woody) plants, regardless of                                                    |
| 10                                                  |                     |                      |      | size, and woody plants less than 3.28 ft tall.                                                             |
| 11                                                  |                     |                      |      | <b>Woody vines</b> – All woody vines greater than 3.28 ft in                                               |
| 12                                                  |                     |                      |      | height.                                                                                                    |
|                                                     | 55                  | = Total Cov          | er   |                                                                                                            |
| Woody Vine Stratum (Plot size: 30' )                |                     |                      |      |                                                                                                            |
| 1                                                   |                     |                      |      |                                                                                                            |
| 2                                                   |                     |                      |      | Hydrophytic<br>Vegetation                                                                                  |
| 3                                                   |                     |                      |      | Present? Yes X No                                                                                          |
| 4                                                   |                     |                      |      |                                                                                                            |
|                                                     |                     | = Total Cov          | er   |                                                                                                            |
|                                                     |                     |                      | -    |                                                                                                            |
| Remarks: (Include photo numbers here or on a separa |                     |                      |      |                                                                                                            |
| Remarks: (Include photo numbers here or on a separa | ,                   |                      |      |                                                                                                            |
| Remarks: (Include photo numbers here or on a separa | ,                   |                      |      |                                                                                                            |
| Remarks: (Include photo numbers here or on a separa | ,                   |                      |      |                                                                                                            |
| Remarks: (Include photo numbers here or on a separa | ,                   |                      |      |                                                                                                            |
| Remarks: (Include photo numbers here or on a separa | ,                   |                      |      |                                                                                                            |
| Remarks: (Include photo numbers here or on a separa | ,                   |                      |      |                                                                                                            |

| Profile Desc           | ription: (Describe t                    | o the dept | th needed to docun                | nent the  | indicator of      | or confirm       | the absence of             | indicators.)                                                                              |  |
|------------------------|-----------------------------------------|------------|-----------------------------------|-----------|-------------------|------------------|----------------------------|-------------------------------------------------------------------------------------------|--|
| Depth                  | Matrix                                  |            | Redo                              | x Feature | <u>s</u>          |                  |                            |                                                                                           |  |
| (inches)               | Color (moist)                           | %          | Color (moist)                     | %         | Type <sup>1</sup> | Loc <sup>2</sup> | Texture                    | Remarks                                                                                   |  |
| 0 - 4                  | 10YR 4/3                                | 100        |                                   |           |                   |                  | Loam                       |                                                                                           |  |
| 4 - 10                 | 2.5Y 4/2                                | 98         | 10YR 4/4                          | 2         | Co                | Ma               | Loam                       |                                                                                           |  |
|                        |                                         |            |                                   |           |                   |                  |                            |                                                                                           |  |
|                        |                                         |            |                                   |           |                   |                  |                            |                                                                                           |  |
|                        |                                         |            |                                   |           |                   |                  |                            |                                                                                           |  |
|                        |                                         |            |                                   |           |                   |                  |                            |                                                                                           |  |
|                        |                                         |            |                                   |           |                   |                  |                            |                                                                                           |  |
| ·                      |                                         |            |                                   |           | <u> </u>          | <u> </u>         |                            |                                                                                           |  |
|                        |                                         |            |                                   |           |                   |                  |                            |                                                                                           |  |
|                        |                                         |            |                                   |           |                   |                  |                            |                                                                                           |  |
|                        |                                         |            |                                   |           |                   | <u> </u>         |                            |                                                                                           |  |
|                        |                                         |            |                                   |           |                   |                  |                            |                                                                                           |  |
|                        |                                         |            |                                   |           |                   |                  |                            |                                                                                           |  |
|                        |                                         |            |                                   |           |                   |                  |                            |                                                                                           |  |
|                        |                                         |            |                                   |           |                   |                  |                            |                                                                                           |  |
|                        |                                         |            |                                   |           |                   |                  |                            |                                                                                           |  |
| <sup>1</sup> Type: C=C | oncentration, D=Depl                    | etion, RM= | Reduced Matrix, MS                | S=Masked  | d Sand Gra        | ains.            | <sup>2</sup> Location: P   | L=Pore Lining, M=Matrix.                                                                  |  |
| Hydric Soil            |                                         |            | · · · ·                           |           |                   |                  |                            | Problematic Hydric Soils <sup>3</sup> :                                                   |  |
| Histosol               | (A1)                                    |            | Polyvalue Below                   | v Surface | (S8) ( <b>LRF</b> | RR,              | 2 cm Muc                   | k (A10) ( <b>LRR K, L, MLRA 149B</b> )                                                    |  |
| Histic Ep              | oipedon (A2)                            |            | MLRA 149B)                        | )         |                   |                  | Coast Pra                  | irie Redox (A16) (LRR K, L, R)                                                            |  |
|                        | stic (A3)                               |            | Thin Dark Surfa                   |           |                   |                  | 5 cm Muc                   | ky Peat or Peat (S3) (LRR K, L, R)                                                        |  |
|                        | en Sulfide (A4)                         |            | Loamy Mucky N                     |           |                   | , L)             |                            | ace (S7) ( <b>LRR K, L, M</b> )                                                           |  |
|                        | d Layers (A5)                           | (          | Loamy Gleyed I                    |           | 2)                |                  |                            | Below Surface (S8) (LRR K, L)                                                             |  |
| ·                      | d Below Dark Surface                    | e (A11)    | X Depleted Matrix                 |           |                   |                  |                            | Surface (S9) (LRR K, L)                                                                   |  |
|                        | ark Surface (A12)<br>lucky Mineral (S1) |            | Redox Dark Sui<br>Depleted Dark S | , ,       |                   |                  |                            | janese Masses (F12) ( <b>LRR K, L, R</b> )<br>Floodplain Soils (F19) ( <b>MLRA 149B</b> ) |  |
|                        | Bleyed Matrix (S4)                      |            | Redox Depress                     |           | ')                |                  |                            | odic (TA6) ( <b>MLRA 144A, 145, 149B</b> )                                                |  |
| -                      | Redox (S5)                              |            |                                   |           |                   |                  |                            | nt Material (F21)                                                                         |  |
| -                      | Matrix (S6)                             |            |                                   |           |                   |                  |                            | low Dark Surface (TF12)                                                                   |  |
| Dark Su                | rface (S7) (LRR R, M                    | LRA 149B   | 3)                                |           |                   |                  | Other (Explain in Remarks) |                                                                                           |  |
|                        |                                         |            |                                   |           |                   |                  |                            |                                                                                           |  |
|                        | f hydrophytic vegetati                  | on and we  | tland hydrology mus               | t be pres | ent, unless       | disturbed        | or problematic.            |                                                                                           |  |
|                        | Layer (if observed):                    |            |                                   |           |                   |                  |                            |                                                                                           |  |
|                        | assive dense                            |            |                                   |           |                   |                  |                            |                                                                                           |  |
| Depth (in              | ches): <u>10</u>                        |            |                                   |           |                   |                  | Hydric Soil Pre            | esent? Yes <u>X</u> No                                                                    |  |
| Remarks:               |                                         |            |                                   |           |                   |                  | •                          |                                                                                           |  |
| HSI: F3b               |                                         |            |                                   |           |                   |                  |                            |                                                                                           |  |
|                        |                                         |            |                                   |           |                   |                  |                            |                                                                                           |  |
|                        |                                         |            |                                   |           |                   |                  |                            |                                                                                           |  |
|                        |                                         |            |                                   |           |                   |                  |                            |                                                                                           |  |
|                        |                                         |            |                                   |           |                   |                  |                            |                                                                                           |  |
|                        |                                         |            |                                   |           |                   |                  |                            |                                                                                           |  |
|                        |                                         |            |                                   |           |                   |                  |                            |                                                                                           |  |
|                        |                                         |            |                                   |           |                   |                  |                            |                                                                                           |  |
|                        |                                         |            |                                   |           |                   |                  |                            |                                                                                           |  |
|                        |                                         |            |                                   |           |                   |                  |                            |                                                                                           |  |
|                        |                                         |            |                                   |           |                   |                  |                            |                                                                                           |  |
|                        |                                         |            |                                   |           |                   |                  |                            |                                                                                           |  |
|                        |                                         |            |                                   |           |                   |                  |                            |                                                                                           |  |
|                        |                                         |            |                                   |           |                   |                  |                            |                                                                                           |  |
|                        |                                         |            |                                   |           |                   |                  |                            |                                                                                           |  |
|                        |                                         |            |                                   |           |                   |                  |                            |                                                                                           |  |
|                        |                                         |            |                                   |           |                   |                  |                            |                                                                                           |  |

| Project/Site: 195601363                                                   | _ City/County: <u>New Haven / Addison</u> Sa   | ampling Date: 10/11/2017 |
|---------------------------------------------------------------------------|------------------------------------------------|--------------------------|
| Applicant/Owner: Vermont Transco, LLC/Vermont Electric Pov                | wer Company State: Vermont                     | Sampling Point: Upland   |
| Investigator(s): EDB                                                      | _ Section, Township, Range:                    |                          |
| Landform (hillslope, terrace, etc.): Rise                                 | Local relief (concave, convex, none): Linear   | Slope (%): 2             |
| Subregion (LRR or MLRA): LRR R Lat: 44.120352                             | Long: <u>-73.164729</u>                        | Datum:NAD83              |
| Soil Map Unit Name:                                                       | NWI classificatio                              | on: UPL                  |
| Are climatic / hydrologic conditions on the site typical for this time of | year? Yes X No (If no, explain in Rem          | narks.)                  |
| Are Vegetation X, Soil X, or Hydrology X significant                      | tly disturbed? Are "Normal Circumstances" pres | sent? Yes X No           |
| Are Vegetation, Soil, or Hydrology naturally p                            | problematic? (If needed, explain any answers i | n Remarks.)              |

## SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

| Hydrophytic Vegetation Present?<br>Hydric Soil Present?                 | Yes No X<br>Yes No X             | Is the Sampled Area<br>within a Wetland? Yes No X |  |  |  |  |
|-------------------------------------------------------------------------|----------------------------------|---------------------------------------------------|--|--|--|--|
| Wetland Hydrology Present?                                              | Yes No X                         | If yes, optional Wetland Site ID: NH-010          |  |  |  |  |
| Remarks: (Explain alternative procedures here or in a separate report.) |                                  |                                                   |  |  |  |  |
| Significantly Disturbed Notes: Cl                                       | eared substation, adjacent to re | oad/fill                                          |  |  |  |  |
|                                                                         |                                  |                                                   |  |  |  |  |
|                                                                         |                                  |                                                   |  |  |  |  |
|                                                                         |                                  |                                                   |  |  |  |  |
|                                                                         |                                  |                                                   |  |  |  |  |

| Wetland Hydrology Indicators:                                                                                                                                        | Secondary Indicators (minimum of two required)       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Primary Indicators (minimum of one is required; check all that apply)                                                                                                | Surface Soil Cracks (B6)                             |
| Surface Water (A1) Water-Stained Leaves (B9)                                                                                                                         | Drainage Patterns (B10)                              |
| High Water Table (A2) Aquatic Fauna (B13)                                                                                                                            | Moss Trim Lines (B16)                                |
| Saturation (A3) Marl Deposits (B15)                                                                                                                                  | Dry-Season Water Table (C2)                          |
| Water Marks (B1) Hydrogen Sulfide Odor (C1)                                                                                                                          | Crayfish Burrows (C8)                                |
| Sediment Deposits (B2) Oxidized Rhizospheres on Living                                                                                                               | Roots (C3) Saturation Visible on Aerial Imagery (C9) |
| Drift Deposits (B3) Presence of Reduced Iron (C4)                                                                                                                    | Stunted or Stressed Plants (D1)                      |
| Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Sc                                                                                                           | bils (C6) Geomorphic Position (D2)                   |
| Iron Deposits (B5) Thin Muck Surface (C7)                                                                                                                            | Shallow Aquitard (D3)                                |
| Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)                                                                                                 | Microtopographic Relief (D4)                         |
| Sparsely Vegetated Concave Surface (B8)                                                                                                                              | FAC-Neutral Test (D5)                                |
| Field Observations:                                                                                                                                                  |                                                      |
| Surface Water Present? Yes <u>No X</u> Depth (inches):                                                                                                               |                                                      |
| Water Table Present? Yes No _ X _ Depth (inches):                                                                                                                    |                                                      |
|                                                                                                                                                                      |                                                      |
| Saturation Present? Yes No X Depth (inches):                                                                                                                         | Wetland Hydrology Present? Yes No X                  |
|                                                                                                                                                                      |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)                                                                                          |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)                                                                                          |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec |                                                      |

# Sampling Point: Upland

| 201                                                   | Absolute | Dominant    |        | Dominance Test worksheet:                                                                                         |
|-------------------------------------------------------|----------|-------------|--------|-------------------------------------------------------------------------------------------------------------------|
| Tree Stratum (Plot size: 30' )                        | % Cover  | Species?    | Status | Number of Dominant Species                                                                                        |
| 1                                                     |          |             |        | That Are OBL, FACW, or FAC: (A)                                                                                   |
| 2                                                     |          |             |        |                                                                                                                   |
|                                                       |          |             |        | Total Number of Dominant<br>Species Across All Strata: 2 (B)                                                      |
| 3                                                     |          |             |        | $\frac{2}{2}$                                                                                                     |
| 4                                                     |          |             |        | Percent of Dominant Species                                                                                       |
| 5                                                     |          |             |        | That Are OBL, FACW, or FAC: (A/B)                                                                                 |
| 6                                                     |          |             |        |                                                                                                                   |
|                                                       |          |             |        | Prevalence Index worksheet:                                                                                       |
| 7                                                     |          |             |        | Total % Cover of: Multiply by:                                                                                    |
|                                                       |          | = Total Cov | er     | OBL species x 1 =                                                                                                 |
| Sapling/Shrub Stratum (Plot size: 15')                |          |             |        | FACW species x 2 =                                                                                                |
| 1. Populus tremuloides                                | 5        | Yes         | FACU   | FAC species x 3 =0                                                                                                |
|                                                       |          |             |        | FACU species <u>110</u> x 4 = <u>440</u>                                                                          |
| 2                                                     |          |             |        | UPL species0 x 5 =0                                                                                               |
| 3                                                     |          |             |        | Column Totals: 110 (A) 440 (B)                                                                                    |
| 4                                                     |          |             |        |                                                                                                                   |
| 5                                                     |          |             |        | Prevalence Index = $B/A = 4.0$                                                                                    |
|                                                       |          |             |        | Hydrophytic Vegetation Indicators:                                                                                |
| 6                                                     |          |             |        | 1 - Rapid Test for Hydrophytic Vegetation                                                                         |
| 7                                                     |          |             |        |                                                                                                                   |
|                                                       | 5        | = Total Cov | er     | 2 - Dominance Test is >50%                                                                                        |
| Herb Stratum (Plot size: 5' )                         |          |             |        | $3$ - Prevalence Index is $\leq 3.0^{1}$                                                                          |
|                                                       | 75       | Yes         | FACU   | 4 - Morphological Adaptations <sup>1</sup> (Provide supporting data in Remarks or on a separate sheet)            |
| 2. Lolium perenne                                     | 1 -      | No          | FACU   | Problematic Hydrophytic Vegetation <sup>1</sup> (Explain)                                                         |
| 3. Solidago canadensis                                | 15       | No          | FACU   |                                                                                                                   |
|                                                       |          |             |        | <sup>1</sup> Indicators of hydric soil and wetland hydrology must<br>be present, unless disturbed or problematic. |
| 4                                                     |          |             |        |                                                                                                                   |
| 5                                                     |          |             |        | Definitions of Vegetation Strata:                                                                                 |
| 6                                                     |          |             |        | <b>Tree</b> – Woody plants 3 in. (7.6 cm) or more in diameter                                                     |
| 7                                                     |          |             |        | at breast height (DBH), regardless of height.                                                                     |
|                                                       |          |             |        | Sapling/shrub – Woody plants less than 3 in. DBH                                                                  |
| 8                                                     |          |             |        | and greater than or equal to 3.28 ft (1 m) tall.                                                                  |
| 9                                                     |          |             |        |                                                                                                                   |
| 10                                                    |          |             |        | <b>Herb</b> – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.     |
| 11                                                    |          |             |        | size, and woody plants less than 5.20 ft tail.                                                                    |
|                                                       |          |             |        | Woody vines – All woody vines greater than 3.28 ft in                                                             |
| 12                                                    |          |             |        | height.                                                                                                           |
|                                                       | 105      | = Total Cov | er     |                                                                                                                   |
| Woody Vine Stratum (Plot size: 30')                   |          |             |        |                                                                                                                   |
| 1                                                     |          |             |        |                                                                                                                   |
|                                                       |          |             |        | Hydrophytic                                                                                                       |
| 2                                                     |          |             |        | Vegetation<br>Present? Yes No X                                                                                   |
| 3                                                     |          |             |        |                                                                                                                   |
| 4                                                     |          |             |        |                                                                                                                   |
|                                                       |          | = Total Cov | er     |                                                                                                                   |
| Remarks: (Include photo numbers here or on a separate | sheet.)  |             |        | 1                                                                                                                 |
|                                                       |          |             |        |                                                                                                                   |
|                                                       |          |             |        |                                                                                                                   |
|                                                       |          |             |        |                                                                                                                   |
|                                                       |          |             |        |                                                                                                                   |
|                                                       |          |             |        |                                                                                                                   |
|                                                       |          |             |        |                                                                                                                   |
|                                                       |          |             |        |                                                                                                                   |
|                                                       |          |             |        |                                                                                                                   |

| Depth (inches)       Matrix       Redox Features         0 - 10       10YR 4/4       100       Loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Remarks                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (inches) Color (moist) % Color (moist) % Type <sup>1</sup> Loc <sup>2</sup> Texture Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Remarks                                                                                                                                                                                                                                                                         |
| 0 - 10         10YR 4/4         100         Loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |
| · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·                                                                              |                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |
| <sup>1</sup> Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. <sup>2</sup> Location: PL=Pore Lining, M=Matrix.                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                 |
| Hydric Soil Indicators: Indicators for Problematic Hydric Soils <sup>3</sup> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                 |
| Histosol (A1) Polyvalue Below Surface (S8) (LRR R, 2 cm Muck (A10) (LRR K, L, MLRA 149)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ic Hydric Soils <sup>3</sup> :                                                                                                                                                                                                                                                  |
| Histic Epipedon (A2) MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ic Hydric Soils <sup>3</sup> :                                                                                                                                                                                                                                                  |
| Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t <b>ic Hydric Soils<sup>3</sup>:</b><br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t <b>ic Hydric Soils<sup>3</sup>:</b><br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)                                                                                                                                                                                               |
| Hydrogen Sulfide (A4) Loamy Mucky Mineral (F1) (LRR K, L) Dark Surface (S7) (LRR K, L, M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t <b>ic Hydric Soils<sup>3</sup>:</b><br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)                                                                                                                                                                    |
| Hydrogen Sulfide (A4)      Loamy Mucky Mineral (F1) (LRR K, L)      Dark Surface (S7) (LRR K, L, M)        Stratified Layers (A5)      Loamy Gleyed Matrix (F2)      Polyvalue Below Surface (S8) (LRR K, L)                                                                                                                                                                                                                                                                                                                                                                         | ti <b>c Hydric Soils<sup>3</sup>:</b><br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)                                                                                                                                    |
| Stratified Layers (A5) Loamy Gleyed Matrix (F2) Polyvalue Below Surface (S8) (LRR K, L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)<br>Đ) (LRR K, L)                                                                                                                   |
| Stratified Layers (A5)       Loamy Gleyed Matrix (F2)       Polyvalue Below Surface (S8) (LRR K, L         Depleted Below Dark Surface (A11)       Depleted Matrix (F3)       Thin Dark Surface (S9) (LRR K, L)                                                                                                                                                                                                                                                                                                                                                                      | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)<br>9) (LRR K, L)<br>ses (F12) (LRR K, L, R)                                                                                        |
| Stratified Layers (A5)       Loamy Gleyed Matrix (F2)       Polyvalue Below Surface (S8) (LRR K, L         Depleted Below Dark Surface (A11)       Depleted Matrix (F3)       Thin Dark Surface (S9) (LRR K, L)         Thick Dark Surface (A12)       Redox Dark Surface (F6)       Iron-Manganese Masses (F12) (LRR K,                                                                                                                                                                                                                                                             | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)<br>9) (LRR K, L)<br>ses (F12) (LRR K, L, R)<br>Soils (F19) (MLRA 149B)                                                             |
| Stratified Layers (A5)       Loamy Gleyed Matrix (F2)       Polyvalue Below Surface (S8) (LRR K, L         Depleted Below Dark Surface (A11)       Depleted Matrix (F3)       Thin Dark Surface (S9) (LRR K, L)         Thick Dark Surface (A12)       Redox Dark Surface (F6)       Iron-Manganese Masses (F12) (LRR K, L)         Sandy Mucky Mineral (S1)       Depleted Dark Surface (F7)       Piedmont Floodplain Soils (F19) (MLRA                                                                                                                                            | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)<br>9) (LRR K, L)<br>ses (F12) (LRR K, L, R)<br>Soils (F19) (MLRA 149B)<br>MLRA 144A, 145, 149B)                                    |
| Stratified Layers (A5)       Loamy Gleyed Matrix (F2)       Polyvalue Below Surface (S8) (LRR K, L         Depleted Below Dark Surface (A11)       Depleted Matrix (F3)       Thin Dark Surface (S9) (LRR K, L)         Thick Dark Surface (A12)       Redox Dark Surface (F6)       Iron-Manganese Masses (F12) (LRR K, L)         Sandy Mucky Mineral (S1)       Depleted Dark Surface (F7)       Piedmont Floodplain Soils (F19) (MLRA         Sandy Gleyed Matrix (S4)       Redox Depressions (F8)       Mesic Spodic (TA6) (MLRA 144A, 145, 145, 145, 145, 145, 145, 145, 145  | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)<br>9) (LRR K, L)<br>ses (F12) (LRR K, L, R)<br>Soils (F19) (MLRA 149B)<br>MLRA 144A, 145, 149B)<br>F21)                            |
| Stratified Layers (A5)       Loamy Gleyed Matrix (F2)       Polyvalue Below Surface (S8) (LRR K, L         Depleted Below Dark Surface (A11)       Depleted Matrix (F3)       Thin Dark Surface (S9) (LRR K, L)         Thick Dark Surface (A12)       Redox Dark Surface (F6)       Iron-Manganese Masses (F12) (LRR K,         Sandy Mucky Mineral (S1)       Depleted Dark Surface (F7)       Piedmont Floodplain Soils (F19) (MLRA         Sandy Gleyed Matrix (S4)       Redox Depressions (F8)       Mesic Spodic (TA6) (MLRA 144A, 145, 145, 145, 145, 145, 145, 145, 145     | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)<br>9) (LRR K, L)<br>ses (F12) (LRR K, L, R)<br>Soils (F19) (MLRA 149B)<br>MLRA 144A, 145, 149B)<br>F21)<br>Irface (TF12)           |
| Stratified Layers (A5)       Loamy Gleyed Matrix (F2)       Polyvalue Below Surface (S8) (LRR K, L         Depleted Below Dark Surface (A11)       Depleted Matrix (F3)       Thin Dark Surface (S9) (LRR K, L)         Thick Dark Surface (A12)       Redox Dark Surface (F6)       Iron-Manganese Masses (F12) (LRR K, L)         Sandy Mucky Mineral (S1)       Depleted Dark Surface (F7)       Piedmont Floodplain Soils (F19) (MLRA         Sandy Gleyed Matrix (S4)       Redox Depressions (F8)       Mesic Spodic (TA6) (MLRA 144A, 145, 145, 145, 145, 145, 145, 145, 145  | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)<br>9) (LRR K, L)<br>ses (F12) (LRR K, L, R)<br>Soils (F19) (MLRA 149B)<br>MLRA 144A, 145, 149B)<br>F21)<br>Irface (TF12)           |
| Stratified Layers (A5)       Loamy Gleyed Matrix (F2)       Polyvalue Below Surface (S8) (LRR K, L         Depleted Below Dark Surface (A11)       Depleted Matrix (F3)       Thin Dark Surface (S9) (LRR K, L)         Thick Dark Surface (A12)       Redox Dark Surface (F6)       Iron-Manganese Masses (F12) (LRR K,         Sandy Mucky Mineral (S1)       Depleted Dark Surface (F7)       Piedmont Floodplain Soils (F19) (MLRA         Sandy Redox (S5)       Redox Depressions (F8)       Mesic Spodic (TA6) (MLRA 144A, 145, 145, 145, 145, 145, 145, 145, 145             | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)<br>9) (LRR K, L)<br>ses (F12) (LRR K, L, R)<br>Soils (F19) (MLRA 149B)<br>MLRA 144A, 145, 149B)<br>F21)<br>Irface (TF12)           |
| Stratified Layers (A5)       Loamy Gleyed Matrix (F2)       Polyvalue Below Surface (S8) (LRR K, L         Depleted Below Dark Surface (A11)       Depleted Matrix (F3)       Thin Dark Surface (S9) (LRR K, L)         Thick Dark Surface (A12)       Redox Dark Surface (F6)       Iron-Manganese Masses (F12) (LRR K,         Sandy Mucky Mineral (S1)       Depleted Dark Surface (F7)       Piedmont Floodplain Soils (F19) (MLRA         Sandy Redox (S5)       Redox Depressions (F8)       Mesic Spodic (TA6) (MLRA 144A, 145, 145, 145, 145, 145, 145, 145, 145             | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)<br>9) (LRR K, L)<br>ses (F12) (LRR K, L, R)<br>Soils (F19) (MLRA 149B)<br>MLRA 144A, 145, 149B)<br>F21)<br>Irface (TF12)           |
| Stratified Layers (A5)       Loamy Gleyed Matrix (F2)       Polyvalue Below Surface (S8) (LRR K, L)         Depleted Below Dark Surface (A11)       Depleted Matrix (F3)       Thin Dark Surface (S9) (LRR K, L)         Thick Dark Surface (A12)       Redox Dark Surface (F6)       Iron-Manganese Masses (F12) (LRR K, L)         Sandy Mucky Mineral (S1)       Depleted Dark Surface (F7)       Piedmont Floodplain Soils (F19) (MLRA         Sandy Gleyed Matrix (S4)       Redox Depressions (F8)       Mesic Spodic (TA6) (MLRA 144A, 145, 145, 145, 145, 145, 145, 145, 145 | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)<br>9) (LRR K, L)<br>ses (F12) (LRR K, L, R)<br>Soils (F19) (MLRA 149B)<br>MLRA 144A, 145, 149B)<br>F21)<br>Irface (TF12)           |
| Stratified Layers (A5)       Loamy Gleyed Matrix (F2)       Polyvalue Below Surface (S8) (LRR K, L)         Depleted Below Dark Surface (A11)       Depleted Matrix (F3)       Thin Dark Surface (S9) (LRR K, L)         Thick Dark Surface (A12)       Redox Dark Surface (F6)       Iron-Manganese Masses (F12) (LRR K,         Sandy Mucky Mineral (S1)       Depleted Dark Surface (F7)       Piedmont Floodplain Soils (F19) (MLRA         Sandy Gleyed Matrix (S4)       Redox Depressions (F8)       Mesic Spodic (TA6) (MLRA 144A, 145, 145, 145, 145, 145, 145, 145, 145    | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)<br>9) (LRR K, L)<br>ses (F12) (LRR K, L, R)<br>Soils (F19) (MLRA 149B)<br>MLRA 144A, 145, 149B)<br>F21)<br>urface (TF12)<br>harks) |
| Stratified Layers (A5)       Loamy Gleyed Matrix (F2)       Polyvalue Below Surface (S8) (LRR K, L         Depleted Below Dark Surface (A11)       Depleted Matrix (F3)       Thin Dark Surface (S9) (LRR K, L)         Thick Dark Surface (A12)       Redox Dark Surface (F6)       Iron-Manganese Masses (F12) (LRR K,         Sandy Mucky Mineral (S1)       Depleted Dark Surface (F7)       Piedmont Floodplain Soils (F19) (MLRA         Sandy Gleyed Matrix (S4)       Redox Depressions (F8)       Mesic Spodic (TA6) (MLRA 144A, 145, 145, 145, 145, 145, 145, 145, 145     | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)<br>9) (LRR K, L)<br>ses (F12) (LRR K, L, R)<br>Soils (F19) (MLRA 149B)<br>MLRA 144A, 145, 149B)<br>F21)<br>urface (TF12)<br>harks) |
| Stratified Layers (A5)       Loamy Gleyed Matrix (F2)       Polyvalue Below Surface (S8) (LRR K, L)         Depleted Below Dark Surface (A11)       Depleted Matrix (F3)       Thin Dark Surface (S9) (LRR K, L)         Thick Dark Surface (A12)       Redox Dark Surface (F6)       Iron-Manganese Masses (F12) (LRR K,         Sandy Mucky Mineral (S1)       Depleted Dark Surface (F7)       Piedmont Floodplain Soils (F19) (MLRA         Sandy Gleyed Matrix (S4)       Redox Depressions (F8)       Mesic Spodic (TA6) (MLRA 144A, 145, 145, 145, 145, 145, 145, 145, 145    | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)<br>9) (LRR K, L)<br>ses (F12) (LRR K, L, R)<br>Soils (F19) (MLRA 149B)<br>MLRA 144A, 145, 149B)<br>F21)<br>urface (TF12)<br>harks) |
| Stratified Layers (A5)       Loamy Gleyed Matrix (F2)       Polyvalue Below Surface (S8) (LRR K, L         Depleted Below Dark Surface (A11)       Depleted Matrix (F3)       Thin Dark Surface (S9) (LRR K, L)         Thick Dark Surface (A12)       Redox Dark Surface (F6)       Iron-Manganese Masses (F12) (LRR K,         Sandy Mucky Mineral (S1)       Depleted Dark Surface (F7)       Piedmont Floodplain Soils (F19) (MLRA         Sandy Gleyed Matrix (S4)       Redox Depressions (F8)       Mesic Spodic (TA6) (MLRA 144A, 145, 145, 145, 145, 145, 145, 145, 145     | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)<br>9) (LRR K, L)<br>ses (F12) (LRR K, L, R)<br>Soils (F19) (MLRA 149B)<br>MLRA 144A, 145, 149B)<br>F21)<br>urface (TF12)<br>harks) |
| Stratified Layers (A5)       Loamy Gleyed Matrix (F2)       Polyvalue Below Surface (S8) (LRR K, L         Depleted Below Dark Surface (A11)       Depleted Matrix (F3)       Thin Dark Surface (S9) (LRR K, L)         Thick Dark Surface (A12)       Redox Dark Surface (F6)       Iron-Manganese Masses (F12) (LRR K,         Sandy Mucky Mineral (S1)       Depleted Dark Surface (F7)       Piedmont Floodplain Soils (F19) (MLRA         Sandy Gleyed Matrix (S4)       Redox Depressions (F8)       Mesic Spodic (TA6) (MLRA 144A, 145, 145, 145, 145, 145, 145, 145, 145     | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)<br>9) (LRR K, L)<br>ses (F12) (LRR K, L, R)<br>Soils (F19) (MLRA 149B)<br>MLRA 144A, 145, 149B)<br>F21)<br>urface (TF12)<br>harks) |
| Stratified Layers (A5)       Loamy Gleyed Matrix (F2)       Polyvalue Below Surface (S8) (LRR K, L         Depleted Below Dark Surface (A11)       Depleted Matrix (F3)       Thin Dark Surface (S9) (LRR K, L)         Thick Dark Surface (A12)       Redox Dark Surface (F6)       Iron-Manganese Masses (F12) (LRR K,         Sandy Mucky Mineral (S1)       Depleted Dark Surface (F7)       Piedmont Floodplain Soils (F19) (MLRA         Sandy Gleyed Matrix (S4)       Redox Depressions (F8)       Mesic Spodic (TA6) (MLRA 144A, 145, 145, 145, 145, 145, 145, 145, 145     | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)<br>9) (LRR K, L)<br>ses (F12) (LRR K, L, R)<br>Soils (F19) (MLRA 149B)<br>MLRA 144A, 145, 149B)<br>F21)<br>urface (TF12)<br>harks) |
| Stratified Layers (A5)       Loamy Gleyed Matrix (F2)       Polyvalue Below Surface (S8) (LRR K, L         Depleted Below Dark Surface (A11)       Depleted Matrix (F3)       Thin Dark Surface (S9) (LRR K, L)         Thick Dark Surface (A12)       Redox Dark Surface (F6)       Iron-Manganese Masses (F12) (LRR K,         Sandy Mucky Mineral (S1)       Depleted Dark Surface (F7)       Piedmont Floodplain Soils (F19) (MLRA         Sandy Gleyed Matrix (S4)       Redox Depressions (F8)       Mesic Spodic (TA6) (MLRA 144A, 145, 145, 145, 145, 145, 145, 145, 145     | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)<br>9) (LRR K, L)<br>ses (F12) (LRR K, L, R)<br>Soils (F19) (MLRA 149B)<br>MLRA 144A, 145, 149B)<br>F21)<br>urface (TF12)<br>harks) |
| Stratified Layers (A5)       Loamy Gleyed Matrix (F2)       Polyvalue Below Surface (S8) (LRR K, L         Depleted Below Dark Surface (A11)       Depleted Matrix (F3)       Thin Dark Surface (S9) (LRR K, L)         Thick Dark Surface (A12)       Redox Dark Surface (F6)       Iron-Manganese Masses (F12) (LRR K,         Sandy Mucky Mineral (S1)       Depleted Dark Surface (F7)       Piedmont Floodplain Soils (F19) (MLRA         Sandy Gleyed Matrix (S4)       Redox Depressions (F8)       Mesic Spodic (TA6) (MLRA 144A, 145, 145, 145, 145, 145, 145, 145, 145     | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)<br>9) (LRR K, L)<br>ses (F12) (LRR K, L, R)<br>Soils (F19) (MLRA 149B)<br>MLRA 144A, 145, 149B)<br>F21)<br>urface (TF12)<br>harks) |
| Stratified Layers (A5)       Loamy Gleyed Matrix (F2)       Polyvalue Below Surface (S8) (LRR K, L         Depleted Below Dark Surface (A11)       Depleted Matrix (F3)       Thin Dark Surface (S9) (LRR K, L)         Thick Dark Surface (A12)       Redox Dark Surface (F6)       Iron-Manganese Masses (F12) (LRR K,         Sandy Mucky Mineral (S1)       Depleted Dark Surface (F7)       Piedmont Floodplain Soils (F19) (MLRA         Sandy Gleyed Matrix (S4)       Redox Depressions (F8)       Mesic Spodic (TA6) (MLRA 144A, 145, 145, 145, 145, 145, 145, 145, 145     | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)<br>9) (LRR K, L)<br>ses (F12) (LRR K, L, R)<br>Soils (F19) (MLRA 149B)<br>MLRA 144A, 145, 149B)<br>F21)<br>urface (TF12)<br>harks) |
| Stratified Layers (A5)       Loamy Gleyed Matrix (F2)       Polyvalue Below Surface (S8) (LRR K, L         Depleted Below Dark Surface (A11)       Depleted Matrix (F3)       Thin Dark Surface (S9) (LRR K, L)         Thick Dark Surface (A12)       Redox Dark Surface (F6)       Iron-Manganese Masses (F12) (LRR K,         Sandy Mucky Mineral (S1)       Depleted Dark Surface (F7)       Piedmont Floodplain Soils (F19) (MLRA         Sandy Gleyed Matrix (S4)       Redox Depressions (F8)       Mesic Spodic (TA6) (MLRA 144A, 145, 145, 145, 145, 145, 145, 145, 145     | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)<br>9) (LRR K, L)<br>ses (F12) (LRR K, L, R)<br>Soils (F19) (MLRA 149B)<br>MLRA 144A, 145, 149B)<br>F21)<br>urface (TF12)<br>harks) |
| Stratified Layers (A5)       Loamy Gleyed Matrix (F2)       Polyvalue Below Surface (S8) (LRR K, L         Depleted Below Dark Surface (A11)       Depleted Matrix (F3)       Thin Dark Surface (S9) (LRR K, L)         Thick Dark Surface (A12)       Redox Dark Surface (F6)       Iron-Manganese Masses (F12) (LRR K,         Sandy Mucky Mineral (S1)       Depleted Dark Surface (F7)       Piedmont Floodplain Soils (F19) (MLRA         Sandy Gleyed Matrix (S4)       Redox Depressions (F8)       Mesic Spodic (TA6) (MLRA 144A, 145, 145, 145, 145, 145, 145, 145, 145     | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)<br>9) (LRR K, L)<br>ses (F12) (LRR K, L, R)<br>Soils (F19) (MLRA 149B)<br>MLRA 144A, 145, 149B)<br>F21)<br>urface (TF12)<br>harks) |
| Stratified Layers (A5)       Loamy Gleyed Matrix (F2)       Polyvalue Below Surface (S8) (LRR K, L         Depleted Below Dark Surface (A11)       Depleted Matrix (F3)       Thin Dark Surface (S9) (LRR K, L)         Thick Dark Surface (A12)       Redox Dark Surface (F6)       Iron-Manganese Masses (F12) (LRR K,         Sandy Mucky Mineral (S1)       Depleted Dark Surface (F7)       Piedmont Floodplain Soils (F19) (MLRA         Sandy Gleyed Matrix (S4)       Redox Depressions (F8)       Mesic Spodic (TA6) (MLRA 144A, 145, 145, 145, 145, 145, 145, 145, 145     | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)<br>9) (LRR K, L)<br>ses (F12) (LRR K, L, R)<br>Soils (F19) (MLRA 149B)<br>MLRA 144A, 145, 149B)<br>F21)<br>urface (TF12)<br>harks) |
| Stratified Layers (A5)       Loamy Gleyed Matrix (F2)       Polyvalue Below Surface (S8) (LRR K, L         Depleted Below Dark Surface (A11)       Depleted Matrix (F3)       Thin Dark Surface (S9) (LRR K, L)         Thick Dark Surface (A12)       Redox Dark Surface (F6)       Iron-Manganese Masses (F12) (LRR K,         Sandy Mucky Mineral (S1)       Depleted Dark Surface (F7)       Piedmont Floodplain Soils (F19) (MLRA         Sandy Gleyed Matrix (S4)       Redox Depressions (F8)       Mesic Spodic (TA6) (MLRA 144A, 145, 145, 145, 145, 145, 145, 145, 145     | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)<br>9) (LRR K, L)<br>ses (F12) (LRR K, L, R)<br>Soils (F19) (MLRA 149B)<br>MLRA 144A, 145, 149B)<br>F21)<br>urface (TF12)<br>harks) |
| Stratified Layers (A5)       Loamy Gleyed Matrix (F2)       Polyvalue Below Surface (S8) (LRR K, L         Depleted Below Dark Surface (A11)       Depleted Matrix (F3)       Thin Dark Surface (S9) (LRR K, L)         Thick Dark Surface (A12)       Redox Dark Surface (F6)       Iron-Manganese Masses (F12) (LRR K,         Sandy Mucky Mineral (S1)       Depleted Dark Surface (F7)       Piedmont Floodplain Soils (F19) (MLRA         Sandy Gleyed Matrix (S4)       Redox Depressions (F8)       Mesic Spodic (TA6) (MLRA 144A, 145, 145, 145, 145, 145, 145, 145, 145     | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)<br>9) (LRR K, L)<br>ses (F12) (LRR K, L, R)<br>Soils (F19) (MLRA 149B)<br>MLRA 144A, 145, 149B)<br>F21)<br>urface (TF12)<br>harks) |
| Stratified Layers (A5)       Loamy Gleyed Matrix (F2)       Polyvalue Below Surface (S8) (LRR K, L         Depleted Below Dark Surface (A11)       Depleted Matrix (F3)       Thin Dark Surface (S9) (LRR K, L)         Thick Dark Surface (A12)       Redox Dark Surface (F6)       Iron-Manganese Masses (F12) (LRR K,         Sandy Mucky Mineral (S1)       Depleted Dark Surface (F7)       Piedmont Floodplain Soils (F19) (MLRA         Sandy Gleyed Matrix (S4)       Redox Depressions (F8)       Mesic Spodic (TA6) (MLRA 144A, 145, 145, 145, 145, 145, 145, 145, 145     | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)<br>9) (LRR K, L)<br>ses (F12) (LRR K, L, R)<br>Soils (F19) (MLRA 149B)<br>MLRA 144A, 145, 149B)<br>F21)<br>urface (TF12)<br>harks) |
| Stratified Layers (A5)       Loamy Gleyed Matrix (F2)       Polyvalue Below Surface (S8) (LRR K, L         Depleted Below Dark Surface (A11)       Depleted Matrix (F3)       Thin Dark Surface (S9) (LRR K, L)         Thick Dark Surface (A12)       Redox Dark Surface (F6)       Iron-Manganese Masses (F12) (LRR K,         Sandy Mucky Mineral (S1)       Depleted Dark Surface (F7)       Piedmont Floodplain Soils (F19) (MLRA         Sandy Gleyed Matrix (S4)       Redox Depressions (F8)       Mesic Spodic (TA6) (MLRA 144A, 145, 145, 145, 145, 145, 145, 145, 145     | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)<br>9) (LRR K, L)<br>ses (F12) (LRR K, L, R)<br>Soils (F19) (MLRA 149B)<br>MLRA 144A, 145, 149B)<br>F21)<br>urface (TF12)<br>harks) |
| Stratified Layers (A5)       Loamy Gleyed Matrix (F2)       Polyvalue Below Surface (S8) (LRR K, L         Depleted Below Dark Surface (A11)       Depleted Matrix (F3)       Thin Dark Surface (S9) (LRR K, L)         Thick Dark Surface (A12)       Redox Dark Surface (F6)       Iron-Manganese Masses (F12) (LRR K,         Sandy Mucky Mineral (S1)       Depleted Dark Surface (F7)       Piedmont Floodplain Soils (F19) (MLRA         Sandy Gleyed Matrix (S4)       Redox Depressions (F8)       Mesic Spodic (TA6) (MLRA 144A, 145, 145, 145, 145, 145, 145, 145, 145     | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)<br>9) (LRR K, L)<br>ses (F12) (LRR K, L, R)<br>Soils (F19) (MLRA 149B)<br>MLRA 144A, 145, 149B)<br>F21)<br>urface (TF12)<br>harks) |
| Stratified Layers (A5)       Loamy Gleyed Matrix (F2)       Polyvalue Below Surface (S8) (LRR K, L         Depleted Below Dark Surface (A11)       Depleted Matrix (F3)       Thin Dark Surface (S9) (LRR K, L)         Thick Dark Surface (A12)       Redox Dark Surface (F6)       Iron-Manganese Masses (F12) (LRR K,         Sandy Mucky Mineral (S1)       Depleted Dark Surface (F7)       Piedmont Floodplain Soils (F19) (MLRA         Sandy Gleyed Matrix (S4)       Redox Depressions (F8)       Mesic Spodic (TA6) (MLRA 144A, 145, 145, 145, 145, 145, 145, 145, 145     | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)<br>9) (LRR K, L)<br>ses (F12) (LRR K, L, R)<br>Soils (F19) (MLRA 149B)<br>MLRA 144A, 145, 149B)<br>F21)<br>urface (TF12)<br>harks) |
| Stratified Layers (A5)       Loamy Gleyed Matrix (F2)       Polyvalue Below Surface (S8) (LRR K, L         Depleted Below Dark Surface (A11)       Depleted Matrix (F3)       Thin Dark Surface (S9) (LRR K, L)         Thick Dark Surface (A12)       Redox Dark Surface (F6)       Iron-Manganese Masses (F12) (LRR K,         Sandy Mucky Mineral (S1)       Depleted Dark Surface (F7)       Piedmont Floodplain Soils (F19) (MLRA         Sandy Gleyed Matrix (S4)       Redox Depressions (F8)       Mesic Spodic (TA6) (MLRA 144A, 145, 145, 145, 145, 145, 145, 145, 145     | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)<br>9) (LRR K, L)<br>ses (F12) (LRR K, L, R)<br>Soils (F19) (MLRA 149B)<br>MLRA 144A, 145, 149B)<br>F21)<br>urface (TF12)<br>harks) |
| Stratified Layers (A5)       Loamy Gleyed Matrix (F2)       Polyvalue Below Surface (S8) (LRR K, L         Depleted Below Dark Surface (A11)       Depleted Matrix (F3)       Thin Dark Surface (S9) (LRR K, L)         Thick Dark Surface (A12)       Redox Dark Surface (F6)       Iron-Manganese Masses (F12) (LRR K,         Sandy Mucky Mineral (S1)       Depleted Dark Surface (F7)       Piedmont Floodplain Soils (F19) (MLRA         Sandy Gleyed Matrix (S4)       Redox Depressions (F8)       Mesic Spodic (TA6) (MLRA 144A, 145, 145, 145, 145, 145, 145, 145, 145     | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)<br>9) (LRR K, L)<br>ses (F12) (LRR K, L, R)<br>Soils (F19) (MLRA 149B)<br>MLRA 144A, 145, 149B)<br>F21)<br>urface (TF12)<br>harks) |
| Stratified Layers (A5)       Loamy Gleyed Matrix (F2)       Polyvalue Below Surface (S8) (LRR K, L         Depleted Below Dark Surface (A11)       Depleted Matrix (F3)       Thin Dark Surface (S9) (LRR K, L)         Thick Dark Surface (A12)       Redox Dark Surface (F6)       Iron-Manganese Masses (F12) (LRR K,         Sandy Mucky Mineral (S1)       Depleted Dark Surface (F7)       Piedmont Floodplain Soils (F19) (MLRA         Sandy Gleyed Matrix (S4)       Redox Depressions (F8)       Mesic Spodic (TA6) (MLRA 144A, 145, 145, 145, 145, 145, 145, 145, 145     | tic Hydric Soils <sup>3</sup> :<br>R K, L, MLRA 149B)<br>A16) (LRR K, L, R)<br>Peat (S3) (LRR K, L, R)<br>RR K, L, M)<br>ace (S8) (LRR K, L)<br>9) (LRR K, L)<br>ses (F12) (LRR K, L, R)<br>Soils (F19) (MLRA 149B)<br>MLRA 144A, 145, 149B)<br>F21)<br>urface (TF12)<br>harks) |

| City/County: New Haven / Addison             | Sampling Date: 10/11/2017                                         |
|----------------------------------------------|-------------------------------------------------------------------|
| ower Company State: Vermor                   | nt Sampling Point: Wetland                                        |
| Section, Township, Range:                    |                                                                   |
| Local relief (concave, convex, none): Linear | Slope (%): 3                                                      |
| 5 Long: <u>-73.164701</u>                    | Datum:NAD83                                                       |
| NWI classifi                                 | cation: PEM                                                       |
| f year? Yes X No (If no, explain in F        | Remarks.)                                                         |
| ntly disturbed? Are "Normal Circumstances"   | present? Yes X No                                                 |
| problematic? (If needed, explain any answe   | ers in Remarks.)                                                  |
|                                              | wwer Company       State: Vermon        Section, Township, Range: |

## SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

| Hydrophytic Vegetation Present?<br>Hydric Soil Present?<br>Wetland Hydrology Present? | Yes X No<br>Yes X No<br>Yes X No | Is the Sampled Area<br>within a Wetland? Yes X No<br>If yes, optional Wetland Site ID: NH-010 |
|---------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------|
| Remarks: (Explain alternative proce                                                   |                                  | 1                                                                                             |
|                                                                                       |                                  |                                                                                               |

| Wetland Hydrology Indicators:                                                                                                                                        | Secondary Indicators (minimum of two required)       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Primary Indicators (minimum of one is required; check all that apply)                                                                                                | Surface Soil Cracks (B6)                             |
| Surface Water (A1) Water-Stained Leaves (B9)                                                                                                                         | Drainage Patterns (B10)                              |
| High Water Table (A2) Aquatic Fauna (B13)                                                                                                                            | Moss Trim Lines (B16)                                |
| Saturation (A3) Marl Deposits (B15)                                                                                                                                  | Dry-Season Water Table (C2)                          |
| Water Marks (B1) Hydrogen Sulfide Odor (C1)                                                                                                                          | Crayfish Burrows (C8)                                |
| Sediment Deposits (B2) Oxidized Rhizospheres on Living                                                                                                               | Roots (C3) Saturation Visible on Aerial Imagery (C9) |
| Drift Deposits (B3) Presence of Reduced Iron (C4)                                                                                                                    | Stunted or Stressed Plants (D1)                      |
| Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Sc                                                                                                           | bils (C6) Geomorphic Position (D2)                   |
| Iron Deposits (B5) Thin Muck Surface (C7)                                                                                                                            | Shallow Aquitard (D3)                                |
| Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)                                                                                                 | Microtopographic Relief (D4)                         |
| Sparsely Vegetated Concave Surface (B8)                                                                                                                              | FAC-Neutral Test (D5)                                |
| Field Observations:                                                                                                                                                  |                                                      |
| Surface Water Present? Yes No X_ Depth (inches):                                                                                                                     |                                                      |
| Water Table Present? Yes NoX Depth (inches):                                                                                                                         |                                                      |
|                                                                                                                                                                      |                                                      |
| Saturation Present? Yes <u>No X</u> Depth (inches):<br>(includes capillary fringe)                                                                                   | Wetland Hydrology Present? Yes X No                  |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec |                                                      |
| (includes capillary fringe)                                                                                                                                          |                                                      |
| (includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec                                                 |                                                      |
| (includes capillary fringe)                                                                                                                                          |                                                      |
| (includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec                                                 |                                                      |
| (includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec                                                 |                                                      |
| (includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec                                                 |                                                      |
| (includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec                                                 |                                                      |
| (includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec                                                 |                                                      |
| (includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec                                                 |                                                      |
| (includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec                                                 |                                                      |
| (includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec                                                 |                                                      |
| (includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec                                                 |                                                      |

# Sampling Point: Wetland

| Tree Stratum (Plot size: 30'                                         | Absolute | Dominant    |            | Dominance Test worksheet:                                                                                         |
|----------------------------------------------------------------------|----------|-------------|------------|-------------------------------------------------------------------------------------------------------------------|
|                                                                      |          | Species?    |            | Number of Dominant Species<br>That Are OBL_EACW_or FAC: 3 (A)                                                     |
| 1                                                                    |          |             |            | That Are OBL, FACW, or FAC:3 (A)                                                                                  |
| 2                                                                    |          |             |            | Total Number of Dominant<br>Species Across All Strata:3(B)                                                        |
| 3                                                                    |          |             |            |                                                                                                                   |
| 4                                                                    |          |             |            | Percent of Dominant Species<br>That Are OBL, FACW, or FAC:100% (A/B)                                              |
| 5                                                                    |          |             |            |                                                                                                                   |
| 6                                                                    |          |             | ·          | Prevalence Index worksheet:                                                                                       |
| 7                                                                    |          |             | ·          | Total % Cover of: Multiply by:                                                                                    |
|                                                                      |          | = Total Cov | ver        | OBL species $30 \times 1 = 30$                                                                                    |
| Sapling/Shrub Stratum (Plot size: 15')                               |          |             |            | FACW species $65 \times 2 = 130$                                                                                  |
| 1. Salix bebbiana                                                    | 15       | Yes         | FACW       | FAC species $0 \times 3 = 0$                                                                                      |
| 2                                                                    |          |             | <u> </u>   | FACU species $0 	 x 4 = 0$                                                                                        |
| 3                                                                    |          |             |            |                                                                                                                   |
| 4                                                                    |          |             |            | Column Totals: <u>95</u> (A) <u>160</u> (B)                                                                       |
| 5                                                                    |          |             |            | Prevalence Index = B/A = 1.7                                                                                      |
| 6                                                                    |          |             |            | Hydrophytic Vegetation Indicators:                                                                                |
| 7                                                                    |          |             |            | $\underline{X}$ 1 - Rapid Test for Hydrophytic Vegetation                                                         |
| /·                                                                   |          | = Total Cov | ·          | X 2 - Dominance Test is >50%                                                                                      |
|                                                                      | 15       | = Total Cov | /er        | <u>X</u> 3 - Prevalence Index is $\leq 3.0^{1}$                                                                   |
| <u>Herb Stratum</u> (Plot size: <u>5'</u> )<br>1. Onoclea sensibilis | 25       | Yes         | FACW       | 4 - Morphological Adaptations <sup>1</sup> (Provide supporting                                                    |
| Dhalavia avundina saa                                                | 20       |             |            | data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation <sup>1</sup> (Explain)                 |
| 2. Phalaris arundinacea                                              |          | Yes         | FACW       |                                                                                                                   |
| 3. Juncus effusus                                                    |          | No          | OBL        | <sup>1</sup> Indicators of hydric soil and wetland hydrology must<br>be present, unless disturbed or problematic. |
| 4. Scirpus atrovirens                                                |          | No          | OBL        |                                                                                                                   |
| 5. Epilobium ciliatum                                                | 5        | No          | FACW       | Definitions of Vegetation Strata:                                                                                 |
| 6                                                                    |          |             |            | Tree – Woody plants 3 in. (7.6 cm) or more in diameter                                                            |
| 7                                                                    |          |             | . <u> </u> | at breast height (DBH), regardless of height.                                                                     |
| 8                                                                    |          |             |            | <b>Sapling/shrub</b> – Woody plants less than 3 in. DBH                                                           |
| 9                                                                    |          |             |            | and greater than or equal to 3.28 ft (1 m) tall.                                                                  |
| 10                                                                   |          |             |            | <b>Herb</b> – All herbaceous (non-woody) plants, regardless of                                                    |
| 11                                                                   |          |             |            | size, and woody plants less than 3.28 ft tall.                                                                    |
| 12.                                                                  |          |             | ·          | <b>Woody vines</b> – All woody vines greater than 3.28 ft in height.                                              |
|                                                                      |          | = Total Cov |            | norgin.                                                                                                           |
| Woody Vine Stratum (Plot size: 30' )                                 |          | - 10(01000  |            |                                                                                                                   |
|                                                                      |          |             |            |                                                                                                                   |
| 1                                                                    |          |             | ·          | Hydrophytic                                                                                                       |
| 2                                                                    |          |             |            | Vegetation                                                                                                        |
| 3                                                                    |          |             | ·          | Present? Yes X No                                                                                                 |
| 4                                                                    |          |             | ·          |                                                                                                                   |
|                                                                      |          | = Total Cov | ver        |                                                                                                                   |
| Remarks: (Include photo numbers here or on a separate                | sheet.)  |             |            |                                                                                                                   |
|                                                                      |          |             |            |                                                                                                                   |
|                                                                      |          |             |            |                                                                                                                   |
|                                                                      |          |             |            |                                                                                                                   |
|                                                                      |          |             |            |                                                                                                                   |
|                                                                      |          |             |            |                                                                                                                   |
|                                                                      |          |             |            |                                                                                                                   |
|                                                                      |          |             |            |                                                                                                                   |

| Profile Desc    | cription: (Describe t | o the dep    | th needed to docu           | ment the   | indicator of      | or confirm       | the absence of             | of indicators.)                                                                        |  |
|-----------------|-----------------------|--------------|-----------------------------|------------|-------------------|------------------|----------------------------|----------------------------------------------------------------------------------------|--|
| Depth           | Matrix                |              |                             | x Feature  | S                 |                  |                            |                                                                                        |  |
| (inches)        | Color (moist)         | %            | Color (moist)               | %          | Type <sup>1</sup> | Loc <sup>2</sup> | Texture                    | Remarks                                                                                |  |
| 0 - 8           | 10YR 4/2              | 98           | 10YR 4/6                    | 2          | Со                | Ma               | Silt Loam                  |                                                                                        |  |
| 8 - 16          | 2.5Y 5/2              | 95           | 2.5Y 5/6                    | 5          | Co                | Ma               | Silt Loam                  |                                                                                        |  |
|                 |                       |              |                             |            |                   |                  |                            |                                                                                        |  |
|                 |                       |              |                             |            | ·                 | ·                |                            |                                                                                        |  |
|                 |                       |              |                             |            |                   |                  |                            |                                                                                        |  |
|                 |                       |              |                             |            |                   |                  |                            |                                                                                        |  |
|                 |                       |              |                             |            |                   | <u> </u>         |                            |                                                                                        |  |
|                 |                       |              |                             |            |                   |                  |                            |                                                                                        |  |
|                 |                       |              |                             |            |                   |                  |                            |                                                                                        |  |
|                 |                       |              |                             |            |                   |                  |                            |                                                                                        |  |
|                 |                       | ·            |                             |            | ·                 | · ·              |                            |                                                                                        |  |
|                 |                       |              |                             |            |                   |                  |                            |                                                                                        |  |
|                 |                       |              |                             |            |                   |                  |                            |                                                                                        |  |
|                 |                       |              |                             |            | ·                 |                  |                            |                                                                                        |  |
|                 |                       |              |                             |            |                   |                  |                            |                                                                                        |  |
|                 |                       |              |                             |            |                   |                  |                            |                                                                                        |  |
| 17              |                       |              | De duce el Matrix, M        | 0          |                   |                  | 21                         |                                                                                        |  |
| Hydric Soil     | oncentration, D=Depl  | etion, Rivi- | Reduced Matrix, M           | S=Masked   | a Sand Gra        | ains.            |                            | PL=Pore Lining, M=Matrix.                                                              |  |
| -               |                       |              | Debuselus Dela              |            |                   |                  |                            | •                                                                                      |  |
| Histosol        | pipedon (A2)          |              | Polyvalue Belo<br>MLRA 149B |            | (58) ( <b>LRF</b> | К К,             |                            | uck (A10) ( <b>LRR K, L, MLRA 149B</b> )<br>Prairie Redox (A16) ( <b>LRR K, L, R</b> ) |  |
|                 | istic (A3)            |              | Thin Dark Surfa             | ,          |                   | PA 1/0R)         |                            | ucky Peat or Peat (S3) (LRR K, L, R)                                                   |  |
|                 | en Sulfide (A4)       |              | Loamy Mucky I               |            |                   |                  |                            | urface (S7) ( <b>LRR K, L, M</b> )                                                     |  |
|                 | d Layers (A5)         |              | Loamy Gleyed                |            |                   | , _/             |                            | ue Below Surface (S8) (LRR K, L)                                                       |  |
|                 | d Below Dark Surface  | e (A11)      | X Depleted Matrix           |            | -,                |                  |                            | Irk Surface (S9) ( <b>LRR K, L</b> )                                                   |  |
|                 | ark Surface (A12)     | · · ·        | Redox Dark Su               |            | )                 |                  |                            | nganese Masses (F12) (LRR K, L, R)                                                     |  |
| Sandy N         | /lucky Mineral (S1)   |              | Depleted Dark               | Surface (F | =7)               |                  | Piedmo                     | nt Floodplain Soils (F19) (MLRA 149B)                                                  |  |
| Sandy G         | Gleyed Matrix (S4)    |              | Redox Depress               | sions (F8) |                   |                  | Mesic S                    | podic (TA6) ( <b>MLRA 144A, 145, 149B</b> )                                            |  |
| -               | Redox (S5)            |              |                             |            |                   |                  | Red Parent Material (F21)  |                                                                                        |  |
|                 | I Matrix (S6)         |              |                             |            |                   |                  |                            | allow Dark Surface (TF12)                                                              |  |
| Dark Su         | rface (S7) (LRR R, M  | ILRA 149E    | 3)                          |            |                   |                  | Other (Explain in Remarks) |                                                                                        |  |
| 3               |                       |              |                             |            |                   |                  |                            |                                                                                        |  |
|                 | f hydrophytic vegetat | on and we    | etiand hydrology mus        | st be pres | ent, uniess       | aisturbea a      | or problematic.            |                                                                                        |  |
|                 | Layer (if observed):  |              |                             |            |                   |                  |                            |                                                                                        |  |
| Type: <u>Ha</u> |                       |              |                             |            |                   |                  |                            | V                                                                                      |  |
|                 | ches): <u>16</u>      |              |                             |            |                   |                  | Hydric Soil F              | Present? Yes <u>X</u> No                                                               |  |
| Remarks:        |                       |              |                             |            |                   |                  |                            |                                                                                        |  |
|                 |                       |              |                             |            |                   |                  |                            |                                                                                        |  |
|                 |                       |              |                             |            |                   |                  |                            |                                                                                        |  |
|                 |                       |              |                             |            |                   |                  |                            |                                                                                        |  |
|                 |                       |              |                             |            |                   |                  |                            |                                                                                        |  |
|                 |                       |              |                             |            |                   |                  |                            |                                                                                        |  |
|                 |                       |              |                             |            |                   |                  |                            |                                                                                        |  |
|                 |                       |              |                             |            |                   |                  |                            |                                                                                        |  |
|                 |                       |              |                             |            |                   |                  |                            |                                                                                        |  |
|                 |                       |              |                             |            |                   |                  |                            |                                                                                        |  |
|                 |                       |              |                             |            |                   |                  |                            |                                                                                        |  |
|                 |                       |              |                             |            |                   |                  |                            |                                                                                        |  |
|                 |                       |              |                             |            |                   |                  |                            |                                                                                        |  |
|                 |                       |              |                             |            |                   |                  |                            |                                                                                        |  |
|                 |                       |              |                             |            |                   |                  |                            |                                                                                        |  |
|                 |                       |              |                             |            |                   |                  |                            |                                                                                        |  |
|                 |                       |              |                             |            |                   |                  |                            |                                                                                        |  |
|                 |                       |              |                             |            |                   |                  |                            |                                                                                        |  |

| Project/Site: 195601363                                                   | _ City/County: New Haven / Addison Sa           | ampling Date: 11/1/2017 |
|---------------------------------------------------------------------------|-------------------------------------------------|-------------------------|
| Applicant/Owner: Vermont Transco, LLC/Vermont Electric Pov                | wer Company State: Vermont                      | Sampling Point: Upland  |
| Investigator(s): EDB                                                      | _ Section, Township, Range:                     |                         |
| Landform (hillslope, terrace, etc.): Rise                                 | Local relief (concave, convex, none): Linear    | Slope (%): 3-6          |
| Subregion (LRR or MLRA): LRR R Lat: 44.121848                             | Long: <u>-73.164056</u>                         | Datum: <u>NAD83</u>     |
| Soil Map Unit Name:                                                       | NWI classification                              | on: UPL                 |
| Are climatic / hydrologic conditions on the site typical for this time of | year? Yes X No (If no, explain in Rem           | arks.)                  |
| Are Vegetation $X_{,}$ Soil $X_{,}$ or Hydrology $X_{,}$ significant      | tly disturbed? Are "Normal Circumstances" pres  | sent? Yes X No          |
| Are Vegetation, Soil, or Hydrology naturally p                            | problematic? (If needed, explain any answers in | n Remarks.)             |

## SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

| Hydrophytic Vegetation Present?<br>Hydric Soil Present? | Yes No X<br>Yes No X       | Is the Sampled Area within a Wetland? | Yes No X          |
|---------------------------------------------------------|----------------------------|---------------------------------------|-------------------|
| Wetland Hydrology Present?                              | Yes No X                   | If yes, optional Wetland              | l Site ID: NH-201 |
| Remarks: (Explain alternative proced                    | ures here or in a separate | e report.)                            |                   |
| Significantly Disturbed Notes: M                        | owed field                 |                                       |                   |
|                                                         |                            |                                       |                   |
|                                                         |                            |                                       |                   |
|                                                         |                            |                                       |                   |
|                                                         |                            |                                       |                   |
|                                                         |                            |                                       |                   |

| Wetland Hydrology Indicators:                                                                                                                                        | Secondary Indicators (minimum of two required)       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Primary Indicators (minimum of one is required; check all that apply)                                                                                                | Surface Soil Cracks (B6)                             |
| Surface Water (A1) Water-Stained Leaves (B9)                                                                                                                         | Drainage Patterns (B10)                              |
| High Water Table (A2) Aquatic Fauna (B13)                                                                                                                            | Moss Trim Lines (B16)                                |
| Saturation (A3) Marl Deposits (B15)                                                                                                                                  | Dry-Season Water Table (C2)                          |
| Water Marks (B1) Hydrogen Sulfide Odor (C1)                                                                                                                          | Crayfish Burrows (C8)                                |
| Sediment Deposits (B2) Oxidized Rhizospheres on Living                                                                                                               | Roots (C3) Saturation Visible on Aerial Imagery (C9) |
| Drift Deposits (B3) Presence of Reduced Iron (C4)                                                                                                                    | Stunted or Stressed Plants (D1)                      |
| Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Sc                                                                                                           | oils (C6) Geomorphic Position (D2)                   |
| Iron Deposits (B5) Thin Muck Surface (C7)                                                                                                                            | Shallow Aquitard (D3)                                |
| Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)                                                                                                 | Microtopographic Relief (D4)                         |
| Sparsely Vegetated Concave Surface (B8)                                                                                                                              | FAC-Neutral Test (D5)                                |
| Field Observations:                                                                                                                                                  |                                                      |
| Surface Water Present? Yes No X_ Depth (inches):                                                                                                                     |                                                      |
| Water Table Present? Yes No _X_ Depth (inches):                                                                                                                      |                                                      |
|                                                                                                                                                                      |                                                      |
| Saturation Present? Yes No X Depth (inches):                                                                                                                         | Wetland Hydrology Present? Yes No X                  |
|                                                                                                                                                                      |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)                                                                                          |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)                                                                                          |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)                                                                                          |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec |                                                      |

# Sampling Point: Upland

| Tree Stratum (Plot size: 30'                          | Absolute | Dominant    |          | Dominance Test worksheet:                                                                                                                                                               |
|-------------------------------------------------------|----------|-------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Tree Stratum</u> (Plot size: <u>30</u> )<br>1)     |          | Species?    |          | Number of Dominant Species<br>That Are OBL, FACW, or FAC: 1 (A)                                                                                                                         |
| 2                                                     |          |             |          |                                                                                                                                                                                         |
| 3                                                     |          |             |          | Total Number of Dominant<br>Species Across All Strata: <u>2</u> (B)                                                                                                                     |
| 4                                                     |          |             |          | Percent of Dominant Species                                                                                                                                                             |
| 5                                                     |          |             |          | That Are OBL, FACW, or FAC: 50% (A/B)                                                                                                                                                   |
| 6                                                     |          |             |          |                                                                                                                                                                                         |
| 7                                                     |          |             |          | Prevalence Index worksheet:                                                                                                                                                             |
| /·                                                    |          |             |          | $\begin{array}{c c} \underline{\text{Total } \% \text{ Cover of:}} & \underline{\text{Multiply by:}} \\ \hline \text{OBL species} & \underline{0} & x 1 = \underline{0} \\ \end{array}$ |
|                                                       |          | = Total Cov | ei       | FACW species $35 \times 2 = 70$                                                                                                                                                         |
| Sapling/Shrub Stratum (Plot size: 15')                |          |             |          | FAC species $5$ $x_3 = 15$                                                                                                                                                              |
| 1                                                     |          |             |          | FACU species $60 \times 4 = 240$                                                                                                                                                        |
| 2                                                     |          |             |          | UPL species $0 \times 5 = 0$                                                                                                                                                            |
| 3                                                     |          |             |          | Column Totals: 100 (A) 325 (B)                                                                                                                                                          |
| 4                                                     |          |             |          |                                                                                                                                                                                         |
| 5                                                     |          |             |          | Prevalence Index = B/A = 3.3                                                                                                                                                            |
| 6                                                     |          |             |          | Hydrophytic Vegetation Indicators:                                                                                                                                                      |
| 7                                                     |          |             |          | 1 - Rapid Test for Hydrophytic Vegetation                                                                                                                                               |
|                                                       |          | = Total Cov |          | 2 - Dominance Test is >50%                                                                                                                                                              |
| Herb Stratum (Plot size: 5' )                         |          | rotar oov   |          | 3 - Prevalence Index is $\leq 3.0^1$                                                                                                                                                    |
| 1. Dactylis glomerata                                 | 35       | Yes         | FACU     | <ul> <li>4 - Morphological Adaptations<sup>1</sup> (Provide supporting<br/>data in Remarks or on a separate sheet)</li> </ul>                                                           |
| 2. Phalaris arundinacea                               | 35       | Yes         | FACW     | Problematic Hydrophytic Vegetation <sup>1</sup> (Explain)                                                                                                                               |
| 3. Galium mollugo                                     |          | No          | FACU     | <sup>1</sup> Indicators of hydric soil and wetland hydrology must                                                                                                                       |
| 4. Ranunculus acris                                   | 5        | No          | FAC      | be present, unless disturbed or problematic.                                                                                                                                            |
| 5. Taraxacum officinale                               | 5        | No          | FACU     | Definitions of Vegetation Strata:                                                                                                                                                       |
| Trifolium protonco                                    | 5        | No          | FACU     | _                                                                                                                                                                                       |
|                                                       |          |             | <u> </u> | <b>Tree</b> – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.                                                                             |
| 7                                                     |          |             |          | Sapling/shrub – Woody plants less than 3 in. DBH                                                                                                                                        |
| 8                                                     | ·······  |             |          | and greater than or equal to 3.28 ft (1 m) tall.                                                                                                                                        |
| 9                                                     |          |             |          | Herb – All herbaceous (non-woody) plants, regardless of                                                                                                                                 |
| 10                                                    |          |             |          | size, and woody plants less than 3.28 ft tall.                                                                                                                                          |
| 11                                                    |          |             |          | <b>Woody vines</b> – All woody vines greater than 3.28 ft in                                                                                                                            |
| 12                                                    |          |             |          | height.                                                                                                                                                                                 |
|                                                       | 100      | = Total Cov | er       |                                                                                                                                                                                         |
| Woody Vine Stratum (Plot size: 30')                   |          |             |          |                                                                                                                                                                                         |
| 1                                                     |          |             |          |                                                                                                                                                                                         |
| 2                                                     |          |             |          | Hydrophytic                                                                                                                                                                             |
| 3                                                     |          |             |          | Vegetation<br>Present? Yes No X                                                                                                                                                         |
| A                                                     |          |             |          |                                                                                                                                                                                         |
|                                                       |          | = Total Cov | or       |                                                                                                                                                                                         |
| Remarks: (Include photo numbers here or on a separate |          |             | CI       |                                                                                                                                                                                         |
|                                                       | onootij  |             |          |                                                                                                                                                                                         |
|                                                       |          |             |          |                                                                                                                                                                                         |
|                                                       |          |             |          |                                                                                                                                                                                         |
|                                                       |          |             |          |                                                                                                                                                                                         |
|                                                       |          |             |          |                                                                                                                                                                                         |
|                                                       |          |             |          |                                                                                                                                                                                         |
|                                                       |          |             |          |                                                                                                                                                                                         |
|                                                       |          |             |          |                                                                                                                                                                                         |

L

| Profile Desc            | ription: (Describe f                      | to the dept | th needed to docur               | nent the   | indicator of        | or confirm       | the absence of         | of indicato  | ors.)      |                               |             |
|-------------------------|-------------------------------------------|-------------|----------------------------------|------------|---------------------|------------------|------------------------|--------------|------------|-------------------------------|-------------|
| Depth                   | Matrix                                    |             | Redo                             | x Feature  | <u>es</u>           | 2                |                        |              |            |                               |             |
| (inches)                | Color (moist)                             | %           | Color (moist)                    | %          | Type <sup>1</sup>   | Loc <sup>2</sup> | Texture                |              | Remai      | <u>'ks</u>                    |             |
| 0 - 14                  | 2.5Y 4/3                                  | 100         |                                  |            |                     |                  | Clay Loam              |              |            |                               |             |
| 14 - 21                 | 2.5Y 4/3                                  | 98          | 7.5YR 4/6                        | 2          | Со                  | Ma               | Clay Loam              |              |            |                               |             |
|                         |                                           |             |                                  |            |                     |                  |                        |              |            |                               |             |
|                         |                                           |             |                                  |            | - <u> </u>          |                  |                        |              |            |                               |             |
|                         |                                           |             |                                  |            |                     |                  |                        |              |            |                               |             |
|                         |                                           |             |                                  |            |                     |                  |                        |              |            |                               |             |
|                         |                                           |             | ,                                |            | . <u> </u>          |                  | ·                      |              |            |                               |             |
| ·                       |                                           |             |                                  |            |                     |                  | ·                      |              |            |                               |             |
|                         |                                           |             |                                  |            |                     |                  |                        |              |            |                               |             |
|                         |                                           |             |                                  |            |                     |                  |                        |              |            |                               |             |
|                         |                                           | <u> </u>    |                                  |            | ·                   |                  |                        |              |            |                               |             |
|                         |                                           |             |                                  |            |                     |                  |                        |              |            |                               |             |
|                         |                                           |             |                                  |            |                     |                  |                        |              |            |                               |             |
| ·                       |                                           |             |                                  |            | . <u> </u>          |                  |                        |              |            |                               |             |
|                         |                                           | <u> </u>    |                                  |            | ·                   |                  | ·                      |              |            |                               |             |
|                         |                                           |             |                                  |            |                     |                  |                        |              |            |                               |             |
| <sup>1</sup> Type: C=Co | oncentration, D=Depl                      | etion, RM=  | Reduced Matrix, MS               | S=Maske    | d Sand Gra          | ins.             | <sup>2</sup> Location: | PL=Pore      | Lining, M= | Matrix.                       |             |
| Hydric Soil             | Indicators:                               |             |                                  |            |                     |                  | Indicators f           | or Proble    | matic Hyd  | Iric Soils <sup>3</sup>       | :           |
| Histosol                | (A1)                                      |             | Polyvalue Belov                  | w Surface  | e (S8) ( <b>LRR</b> | R,               | 2 cm M                 | uck (A10) (  | LRR K, L   | , MLRA 14                     | <b>9B</b> ) |
|                         | pipedon (A2)                              |             | MLRA 149B                        |            |                     |                  |                        |              |            | LRR K, L,                     |             |
|                         | stic (A3)                                 |             | Thin Dark Surfa                  |            |                     |                  |                        | -            |            | 3) ( <b>LRR K</b>             | , L, R)     |
|                         | en Sulfide (A4)                           |             | Loamy Mucky N                    |            |                     | L)               |                        | Irface (S7)  |            |                               | • `         |
|                         | d Layers (A5)                             | (11)        | Loamy Gleyed                     |            | 2)                  |                  |                        |              |            | 8) ( <b>LRR K</b> ,           | , L)        |
| ·                       | d Below Dark Surface<br>ark Surface (A12) | e (ATT)     | Depleted Matrix<br>Redox Dark Su |            | <b>`</b>            |                  |                        | rk Surface   |            | r r, l)<br>12) ( <b>LRR f</b> |             |
|                         | lucky Mineral (S1)                        |             | Depleted Dark                    | • •        |                     |                  |                        | -            |            | F19) ( <b>MLR</b>             |             |
|                         | Gleyed Matrix (S4)                        |             | Redox Depress                    |            |                     |                  |                        |              |            | 144A, 145                     |             |
|                         | Redox (S5)                                |             |                                  | ( )        |                     |                  |                        | rent Materi  |            |                               | ,           |
| Stripped                | Matrix (S6)                               |             |                                  |            |                     |                  | Very Sh                | allow Dark   | Surface    | (TF12)                        |             |
| Dark Su                 | rface (S7) (LRR R, N                      | ILRA 149B   | 6)                               |            |                     |                  | Other (E               | Explain in F | Remarks)   |                               |             |
| 3                       |                                           |             |                                  |            |                     |                  |                        |              |            |                               |             |
|                         | f hydrophytic vegetat                     |             | tland hydrology mus              | st be pres | ent, unless         | disturbed        | or problematic.        |              |            |                               |             |
|                         | Layer (if observed):                      |             |                                  |            |                     |                  |                        |              |            |                               |             |
| Туре:                   |                                           |             |                                  |            |                     |                  |                        |              |            |                               | V           |
| Depth (ind              | ches):                                    |             |                                  |            |                     |                  | Hydric Soil F          | Present?     | Yes        | No                            | <u>X</u>    |
| Remarks:                |                                           |             |                                  |            |                     |                  |                        |              |            |                               |             |
|                         |                                           |             |                                  |            |                     |                  |                        |              |            |                               |             |
|                         |                                           |             |                                  |            |                     |                  |                        |              |            |                               |             |
|                         |                                           |             |                                  |            |                     |                  |                        |              |            |                               |             |
|                         |                                           |             |                                  |            |                     |                  |                        |              |            |                               |             |
|                         |                                           |             |                                  |            |                     |                  |                        |              |            |                               |             |
|                         |                                           |             |                                  |            |                     |                  |                        |              |            |                               |             |
|                         |                                           |             |                                  |            |                     |                  |                        |              |            |                               |             |
|                         |                                           |             |                                  |            |                     |                  |                        |              |            |                               |             |
|                         |                                           |             |                                  |            |                     |                  |                        |              |            |                               |             |
|                         |                                           |             |                                  |            |                     |                  |                        |              |            |                               |             |
|                         |                                           |             |                                  |            |                     |                  |                        |              |            |                               |             |
|                         |                                           |             |                                  |            |                     |                  |                        |              |            |                               |             |
|                         |                                           |             |                                  |            |                     |                  |                        |              |            |                               |             |
|                         |                                           |             |                                  |            |                     |                  |                        |              |            |                               |             |
|                         |                                           |             |                                  |            |                     |                  |                        |              |            |                               |             |
|                         |                                           |             |                                  |            |                     |                  |                        |              |            |                               |             |
|                         |                                           |             |                                  |            |                     |                  |                        |              |            |                               |             |

| Project/Site: 195601363                                                     | _ City/County: <u>New Haven / Addison</u> Sa  | ampling Date: 11/1/2017 |
|-----------------------------------------------------------------------------|-----------------------------------------------|-------------------------|
| Applicant/Owner: Vermont Transco, LLC/Vermont Electric Pow                  | ver Company State: Vermont                    | Sampling Point: Wetland |
| Investigator(s): EDB                                                        | _ Section, Township, Range:                   |                         |
| Landform (hillslope, terrace, etc.): Dip                                    | ocal relief (concave, convex, none): Linear   | Slope (%): 2-4          |
| Subregion (LRR or MLRA): LRR R Lat: 44.1211873                              | Long: -73.163984                              | Datum:NAD83             |
| Soil Map Unit Name:                                                         | NWI classification                            | on: PEM                 |
| Are climatic / hydrologic conditions on the site typical for this time of y | year? Yes X No (If no, explain in Rem         | arks.)                  |
| Are Vegetation $X$ , Soil $X$ , or Hydrology $X$ significant                | ly disturbed? Are "Normal Circumstances" pres | sent? Yes X No          |
| Are Vegetation, Soil, or Hydrology naturally p                              | roblematic? (If needed, explain any answers i | n Remarks.)             |

## SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

| Hydrophytic Vegetation Present?<br>Hydric Soil Present?<br>Wetland Hydrology Present? | Yes No X<br>Yes No X<br>Yes No X    | Is the Sampled Area<br>within a Wetland? Yes X No<br>If yes, optional Wetland Site ID: <u>NH-201</u> |
|---------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------|
| Remarks: (Explain alternative proced                                                  | ures here or in a separate report.) |                                                                                                      |
| Significantly Disturbed Notes: M                                                      | owed ag field                       |                                                                                                      |
|                                                                                       | -                                   |                                                                                                      |
|                                                                                       |                                     |                                                                                                      |
|                                                                                       |                                     |                                                                                                      |
|                                                                                       |                                     |                                                                                                      |
|                                                                                       |                                     |                                                                                                      |

| Wetland Hydrology Indicators:                                                                                                                                                    | Secondary Indicators (minimum of two required) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Primary Indicators (minimum of one is required; check all that apply)                                                                                                            | Surface Soil Cracks (B6)                       |
|                                                                                                                                                                                  | Stunted or Stressed Plants (D1)                |
| Field Observations:                                                                                                                                                              |                                                |
| Surface Water Present?       Yes No Depth (inches):         Water Table Present?       Yes _ X No Depth (inches):4         Saturation Present?       Yes _ X No Depth (inches):0 | Wetland Hydrology Present? Yes X No            |
| (includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec                                                             |                                                |

# Sampling Point: Wetland

| Tree Stratum (Plot size: 30'                          | Absolute | Dominant I<br>Species? |      | Dominance Test worksheet:                                                                              |
|-------------------------------------------------------|----------|------------------------|------|--------------------------------------------------------------------------------------------------------|
| 1)                                                    |          |                        |      | Number of Dominant Species<br>That Are OBL, FACW, or FAC: 1 (A)                                        |
| 2                                                     |          |                        |      |                                                                                                        |
| 3                                                     |          |                        |      | Total Number of Dominant Species Across All Strata: 1 (B)                                              |
| 4                                                     |          |                        |      | Percent of Dominant Species                                                                            |
| 5                                                     |          |                        |      | That Are OBL, FACW, or FAC: 100% (A/B)                                                                 |
| 6                                                     |          |                        |      | Prevalence Index worksheet:                                                                            |
| 7                                                     |          |                        |      | Total % Cover of:Multiply by:                                                                          |
|                                                       |          | = Total Cove           | er   | OBL species         25         x 1 =         25                                                        |
| Sapling/Shrub Stratum (Plot size: 15')                |          |                        |      | FACW species 75 x 2 = 150                                                                              |
| 1                                                     |          |                        |      | FAC species5 x 3 =15                                                                                   |
| 2                                                     |          |                        |      | FACU species $0 x 4 = 0$                                                                               |
| 3                                                     |          |                        |      | UPL species $0 \times 5 = 0$<br>Column Totals: 105 (A) 190 (B)                                         |
| 4                                                     |          |                        |      | Column Totals: <u>105</u> (A) <u>190</u> (B)                                                           |
| 5                                                     |          |                        |      | Prevalence Index = $B/A = 1.8$                                                                         |
| 6                                                     |          |                        |      | Hydrophytic Vegetation Indicators:                                                                     |
| 7                                                     |          |                        |      | X 1 - Rapid Test for Hydrophytic Vegetation                                                            |
|                                                       |          | = Total Cove           | er   | $\underline{X}$ 2 - Dominance Test is >50%                                                             |
| Herb Stratum (Plot size: 5'                           |          |                        |      | <u>X</u> 3 - Prevalence Index is $\leq 3.0^1$                                                          |
| 1. Phalaris arundinacea                               | 75       | Yes                    | FACW | 4 - Morphological Adaptations <sup>1</sup> (Provide supporting data in Remarks or on a separate sheet) |
| 2. Carex gynandra                                     | 15       | No                     | OBL  | Problematic Hydrophytic Vegetation <sup>1</sup> (Explain)                                              |
| 3. Juncus effusus                                     | 10       | No                     | OBL  | <sup>1</sup> Indicators of hydric soil and wetland hydrology must                                      |
| 4. Ranunculus acris                                   | F        | No                     | FAC  | be present, unless disturbed or problematic.                                                           |
| 5                                                     |          |                        |      | Definitions of Vegetation Strata:                                                                      |
| 6                                                     |          |                        |      | Tree – Woody plants 3 in. (7.6 cm) or more in diameter                                                 |
| 7                                                     |          |                        |      | at breast height (DBH), regardless of height.                                                          |
| 8                                                     |          |                        |      | Sapling/shrub – Woody plants less than 3 in. DBH                                                       |
| 9                                                     |          |                        |      | and greater than or equal to 3.28 ft (1 m) tall.                                                       |
| 10                                                    |          |                        |      | Herb – All herbaceous (non-woody) plants, regardless of                                                |
| 11                                                    |          |                        |      | size, and woody plants less than 3.28 ft tall.                                                         |
| 12.                                                   |          |                        |      | <b>Woody vines</b> – All woody vines greater than 3.28 ft in height.                                   |
|                                                       | 105      | = Total Cove           | er   |                                                                                                        |
| Woody Vine Stratum (Plot size: 30' )                  |          |                        |      |                                                                                                        |
| 1                                                     |          |                        |      |                                                                                                        |
| 2                                                     |          |                        |      | Hydrophytic<br>Vegetation                                                                              |
| 3                                                     |          |                        |      | Present? Yes X No                                                                                      |
| 4                                                     |          |                        |      |                                                                                                        |
|                                                       |          | = Total Cove           | er   |                                                                                                        |
| Remarks: (Include photo numbers here or on a separate | sheet.)  |                        |      |                                                                                                        |
|                                                       |          |                        |      |                                                                                                        |
|                                                       |          |                        |      |                                                                                                        |
|                                                       |          |                        |      |                                                                                                        |
|                                                       |          |                        |      |                                                                                                        |
|                                                       |          |                        |      |                                                                                                        |
|                                                       |          |                        |      |                                                                                                        |
|                                                       |          |                        |      |                                                                                                        |

| Profile Desc               | ription: (Describe t               | o the dept | h needed to docur               | nent the i | ndicator          | or confirm       | the absence of indica                                                                                      | itors.)                                                         |  |  |
|----------------------------|------------------------------------|------------|---------------------------------|------------|-------------------|------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|
| Depth                      | Matrix                             |            |                                 | x Feature  | <u>S</u> 1        | 2                |                                                                                                            |                                                                 |  |  |
| (inches)                   | Color (moist)                      | <u>%</u>   | Color (moist)                   |            | Type <sup>1</sup> | Loc <sup>2</sup> | Texture                                                                                                    | Remarks                                                         |  |  |
| 0 - 12                     | 2.5Y 4/1                           | 95         | 7.5YR 4/6                       | 5          | C                 | M                | Clay Loam                                                                                                  |                                                                 |  |  |
| 12 - 20                    | 2.5Y 3/1                           | 95         | 7.5YR 4/6                       | 5          | C                 | M                | Clay Loam                                                                                                  |                                                                 |  |  |
|                            |                                    | . <u></u>  |                                 |            |                   |                  |                                                                                                            |                                                                 |  |  |
|                            |                                    |            |                                 |            |                   |                  |                                                                                                            |                                                                 |  |  |
|                            |                                    |            |                                 |            |                   |                  |                                                                                                            |                                                                 |  |  |
|                            |                                    |            |                                 |            |                   |                  |                                                                                                            |                                                                 |  |  |
|                            |                                    |            |                                 | . <u> </u> |                   |                  |                                                                                                            |                                                                 |  |  |
|                            |                                    |            |                                 |            |                   |                  |                                                                                                            |                                                                 |  |  |
|                            |                                    |            |                                 |            |                   |                  |                                                                                                            |                                                                 |  |  |
|                            |                                    |            |                                 |            |                   |                  |                                                                                                            |                                                                 |  |  |
|                            |                                    |            |                                 |            |                   |                  |                                                                                                            |                                                                 |  |  |
|                            |                                    |            |                                 |            |                   |                  |                                                                                                            |                                                                 |  |  |
|                            |                                    |            |                                 |            |                   |                  |                                                                                                            |                                                                 |  |  |
|                            |                                    |            |                                 |            |                   |                  | 21 11 51 5                                                                                                 |                                                                 |  |  |
| Hydric Soil I              | oncentration, D=Depl<br>ndicators: | etion, RM= | Reduced Matrix, Ma              | S=Masked   | Sand Gra          | ains.            | <sup>2</sup> Location: PL=Pore Lining, M=Matrix.<br>Indicators for Problematic Hydric Soils <sup>3</sup> : |                                                                 |  |  |
| Histosol                   |                                    | _          | Polyvalue Below                 | w Surface  | (S8) ( <b>LRR</b> | R,               |                                                                                                            | ) (LRR K, L, MLRA 149B)                                         |  |  |
|                            | pipedon (A2)                       |            | MLRA 149B)                      |            |                   |                  |                                                                                                            | edox (A16) ( <b>LRR K, L, R</b> )                               |  |  |
| Black Hi                   |                                    | -          | Thin Dark Surfa                 |            |                   |                  | -                                                                                                          | at or Peat (S3) ( <b>LRR K, L, R</b> )                          |  |  |
|                            | n Sulfide (A4)<br>I Layers (A5)    | -          | Loamy Mucky N<br>Loamy Gleyed I |            |                   | L)               |                                                                                                            | 7) ( <b>LRR K, L, M</b> )<br>/ Surface (S8) ( <b>LRR K, L</b> ) |  |  |
|                            | Below Dark Surface                 | e (A11)    | X Depleted Matrix               |            | /                 |                  | Polyvalue Below Surface (S8) (LRR K, L) Thin Dark Surface (S9) (LRR K, L)                                  |                                                                 |  |  |
|                            | ark Surface (A12)                  | -          | Redox Dark Su                   | , ,        |                   |                  |                                                                                                            | e Masses (F12) (LRR K, L, R)                                    |  |  |
|                            | lucky Mineral (S1)                 | -          | Depleted Dark S                 |            | 7)                |                  | Piedmont Floodplain Soils (F19) (MLRA 149B)                                                                |                                                                 |  |  |
| -                          | edox (S5)                          | -          | Redox Depress                   | ions (F8)  |                   |                  | Mesic Spodic (TA6) ( <b>MLRA 144A, 145, 149B</b> )<br>Red Parent Material (F21)                            |                                                                 |  |  |
| -                          | Matrix (S6)                        |            |                                 |            |                   |                  | Very Shallow Dark Surface (TF12)                                                                           |                                                                 |  |  |
|                            | rface (S7) (LRR R, M               | LRA 149B   | )                               |            |                   |                  | Other (Explain in                                                                                          |                                                                 |  |  |
| <sup>3</sup> Indicators of | f hydrophytic vegetati             | on and wet | land hydrology mus              | t he nrese | nt unless         | disturbed        | or problematic                                                                                             |                                                                 |  |  |
|                            | -ayer (if observed):               |            | and hydrology mus               | t be prese | int, uniess       | uistuibeu        |                                                                                                            |                                                                 |  |  |
| Type:                      |                                    |            |                                 |            |                   |                  |                                                                                                            |                                                                 |  |  |
| Depth (inc                 | ches):                             |            |                                 |            |                   |                  | Hydric Soil Present?                                                                                       | ? Yes X No                                                      |  |  |
| Remarks:                   |                                    |            |                                 |            |                   |                  |                                                                                                            |                                                                 |  |  |
|                            |                                    |            |                                 |            |                   |                  |                                                                                                            |                                                                 |  |  |
|                            |                                    |            |                                 |            |                   |                  |                                                                                                            |                                                                 |  |  |
|                            |                                    |            |                                 |            |                   |                  |                                                                                                            |                                                                 |  |  |
|                            |                                    |            |                                 |            |                   |                  |                                                                                                            |                                                                 |  |  |
|                            |                                    |            |                                 |            |                   |                  |                                                                                                            |                                                                 |  |  |
|                            |                                    |            |                                 |            |                   |                  |                                                                                                            |                                                                 |  |  |
|                            |                                    |            |                                 |            |                   |                  |                                                                                                            |                                                                 |  |  |
|                            |                                    |            |                                 |            |                   |                  |                                                                                                            |                                                                 |  |  |
|                            |                                    |            |                                 |            |                   |                  |                                                                                                            |                                                                 |  |  |
|                            |                                    |            |                                 |            |                   |                  |                                                                                                            |                                                                 |  |  |
|                            |                                    |            |                                 |            |                   |                  |                                                                                                            |                                                                 |  |  |
|                            |                                    |            |                                 |            |                   |                  |                                                                                                            |                                                                 |  |  |
|                            |                                    |            |                                 |            |                   |                  |                                                                                                            |                                                                 |  |  |
|                            |                                    |            |                                 |            |                   |                  |                                                                                                            |                                                                 |  |  |

| Project/Site: <u>195601363</u>                                            | City/County: New Haven / Addison Sampling Date: 11/1/2012 |                      |  |  |  |
|---------------------------------------------------------------------------|-----------------------------------------------------------|----------------------|--|--|--|
| Applicant/Owner: Vermont Transco, LLC/Vermont Electric Pov                | wer Company State: Vermont Sa                             | mpling Point: Upland |  |  |  |
| Investigator(s): EDB                                                      | _ Section, Township, Range:                               |                      |  |  |  |
| Landform (hillslope, terrace, etc.): Rise                                 | Local relief (concave, convex, none): Convex              | Slope (%): 2-4       |  |  |  |
| Subregion (LRR or MLRA): LRR R Lat: 44.122189                             | Long: <u>-73.158973</u>                                   | Datum: <u>NAD83</u>  |  |  |  |
| Soil Map Unit Name:                                                       | NWI classification:                                       | UPL                  |  |  |  |
| Are climatic / hydrologic conditions on the site typical for this time of | year? Yes X No (If no, explain in Remark                  | s.)                  |  |  |  |
| Are Vegetation, Soil, or Hydrology significant                            | tly disturbed? Are "Normal Circumstances" present         | ? Yes X No           |  |  |  |
| Are Vegetation, Soil, or Hydrology naturally                              | problematic? (If needed, explain any answers in R         | emarks.)             |  |  |  |

## SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

| Hydrophytic Vegetation Present?<br>Hydric Soil Present?<br>Wetland Hydrology Present? | Yes No X<br>Yes No X<br>Yes No X    | Is the Sampled Area<br>within a Wetland? Yes No X<br>If yes, optional Wetland Site ID: NH-202 |
|---------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------|
| Remarks: (Explain alternative procedu                                                 | ures here or in a separate report.) |                                                                                               |
|                                                                                       |                                     |                                                                                               |
|                                                                                       |                                     |                                                                                               |
|                                                                                       |                                     |                                                                                               |

| Wetland Hydrology Indicators:                                                                                                                                        | Secondary Indicators (minimum of two required)       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Primary Indicators (minimum of one is required; check all that apply)                                                                                                | Surface Soil Cracks (B6)                             |
| Surface Water (A1) Water-Stained Leaves (B9)                                                                                                                         | Drainage Patterns (B10)                              |
| High Water Table (A2) Aquatic Fauna (B13)                                                                                                                            | Moss Trim Lines (B16)                                |
| Saturation (A3) Marl Deposits (B15)                                                                                                                                  | Dry-Season Water Table (C2)                          |
| Water Marks (B1) Hydrogen Sulfide Odor (C1)                                                                                                                          | Crayfish Burrows (C8)                                |
| Sediment Deposits (B2) Oxidized Rhizospheres on Living                                                                                                               | Roots (C3) Saturation Visible on Aerial Imagery (C9) |
| Drift Deposits (B3) Presence of Reduced Iron (C4)                                                                                                                    | Stunted or Stressed Plants (D1)                      |
| Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Sc                                                                                                           | pils (C6) Geomorphic Position (D2)                   |
| Iron Deposits (B5) Thin Muck Surface (C7)                                                                                                                            | Shallow Aquitard (D3)                                |
| Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)                                                                                                 | Microtopographic Relief (D4)                         |
| Sparsely Vegetated Concave Surface (B8)                                                                                                                              | FAC-Neutral Test (D5)                                |
| Field Observations:                                                                                                                                                  |                                                      |
| Surface Water Present? Yes <u>No X</u> Depth (inches):                                                                                                               |                                                      |
|                                                                                                                                                                      |                                                      |
| Water Table Present? Yes <u>No X</u> Depth (inches):                                                                                                                 |                                                      |
| Saturation Present? Yes No X Depth (inches):                                                                                                                         | Wetland Hydrology Present? Yes No X                  |
|                                                                                                                                                                      |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)                                                                                          |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)                                                                                          |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec |                                                      |

| 20'                                                                 | Absolute | Dominant     |      | Dominance Test worksheet:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------|----------|--------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tree Stratum (Plot size: 30')                                       |          | Species?     |      | Number of Dominant Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1. Pinus strobus                                                    | 85       | Yes          | FACU | That Are OBL, FACW, or FAC: $0$ (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2                                                                   |          |              |      | Tatal Number of Deminent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3                                                                   |          |              |      | Total Number of Dominant<br>Species Across All Strata: <u>3</u> (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                     |          |              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                                                                   |          |              |      | Percent of Dominant Species<br>That Are OBL_EACW_or_EAC: 0% (A/B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5                                                                   |          | . <u> </u>   |      | That Are OBL, FACW, or FAC:(A/B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6                                                                   |          |              |      | Prevalence Index worksheet:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7                                                                   |          |              |      | Total % Cover of: Multiply by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                     | 05       | = Total Cove |      | $\begin{array}{c} \hline \hline \\ OBL species \\ \hline \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \hline \\ x \\ 1 \\ \end{array} \\ \begin{array}{c} \hline \\ x \\ 1 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \hline \\ x \\ 1 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\$ |
|                                                                     |          | - 101ai 0000 |      | FACW species $0 	 x^2 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sapling/Shrub Stratum (Plot size: 15')                              |          |              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1. Lonicera morrowii                                                | 15       | Yes          | FACU |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2. Viburnum lantanoides                                             | 10       | Yes          | FACU | FACU species $112$ x 4 = $448$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3. Acer saccharum                                                   | 2        | No           | FACU | UPL species $0 \times 5 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                     |          |              |      | Column Totals: <u>114</u> (A) <u>454</u> (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4                                                                   |          | . <u> </u>   |      | Descriptions hadres D/A 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5                                                                   |          |              |      | Prevalence Index = B/A = 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6                                                                   |          |              |      | Hydrophytic Vegetation Indicators:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7                                                                   |          |              |      | 1 - Rapid Test for Hydrophytic Vegetation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                     |          |              |      | 2 - Dominance Test is >50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                     |          | = Total Cove | er   | 3 - Prevalence Index is ≤3.0 <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <u>Herb Stratum</u> (Plot size: <u>5'</u> )<br>1. Equisetum arvense | C        | No           | FAC  | 4 - Morphological Adaptations <sup>1</sup> (Provide supporting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                     |          |              |      | data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation <sup>1</sup> (Explain)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2                                                                   |          |              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3                                                                   |          | . <u> </u>   |      | <sup>1</sup> Indicators of hydric soil and wetland hydrology must                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4                                                                   |          |              |      | be present, unless disturbed or problematic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5                                                                   |          |              |      | Definitions of Vegetation Strata:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                     |          |              |      | Tree Monthumberts 2 in (7.0 pm) or more in discretes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6                                                                   |          |              |      | <b>Tree</b> – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7                                                                   |          | . <u> </u>   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8                                                                   |          |              |      | <b>Sapling/shrub</b> – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 9                                                                   |          |              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10                                                                  |          |              |      | Herb - All herbaceous (non-woody) plants, regardless of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                     |          |              |      | size, and woody plants less than 3.28 ft tall.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 11                                                                  |          |              |      | <b>Woody vines</b> – All woody vines greater than 3.28 ft in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 12                                                                  |          | . <u> </u>   |      | height.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                     | 2        | = Total Cove | er   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Woody Vine Stratum (Plot size: 30' )                                |          |              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                     |          |              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                                                                   |          |              |      | Hydrophytic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2                                                                   |          | . <u> </u>   |      | Vegetation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3                                                                   |          |              |      | Present? Yes <u>No X</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4.                                                                  |          |              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                     |          | = Total Cove | er   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Remarks: (Include photo numbers here or on a separate               |          | 10101 0011   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                     | onoon)   |              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                     |          |              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                     |          |              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                     |          |              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                     |          |              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                     |          |              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                     |          |              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                     |          |              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                     |          |              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) |                                             |            |                               |             |                    |                  |                                                                     |        |  |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------|-------------------------------|-------------|--------------------|------------------|---------------------------------------------------------------------|--------|--|
| Depth                                                                                                               | Matrix                                      |            | Redo                          | x Features  | \$                 |                  |                                                                     |        |  |
| (inches)                                                                                                            | Color (moist)                               | %          | Color (moist)                 | %           | Type <sup>1</sup>  | Loc <sup>2</sup> | Texture Re                                                          | emarks |  |
| 0 - 10                                                                                                              | 10YR 4/4                                    | 100        |                               |             |                    |                  | Loam                                                                |        |  |
| 10 - 16                                                                                                             | 10YR 4/3                                    | 100        |                               |             |                    |                  | Clay Loam                                                           |        |  |
|                                                                                                                     |                                             |            |                               |             |                    |                  |                                                                     |        |  |
|                                                                                                                     |                                             |            |                               |             |                    |                  |                                                                     |        |  |
|                                                                                                                     |                                             |            |                               |             |                    |                  |                                                                     |        |  |
|                                                                                                                     |                                             |            |                               |             |                    |                  |                                                                     |        |  |
|                                                                                                                     |                                             |            |                               |             |                    |                  |                                                                     |        |  |
|                                                                                                                     |                                             |            |                               |             |                    |                  |                                                                     |        |  |
|                                                                                                                     |                                             |            |                               |             |                    |                  |                                                                     |        |  |
|                                                                                                                     |                                             |            |                               |             |                    |                  |                                                                     |        |  |
|                                                                                                                     |                                             |            |                               |             |                    |                  |                                                                     |        |  |
|                                                                                                                     |                                             |            |                               |             |                    |                  |                                                                     |        |  |
|                                                                                                                     |                                             |            |                               |             |                    |                  |                                                                     |        |  |
|                                                                                                                     |                                             |            |                               |             |                    |                  |                                                                     |        |  |
| <sup>1</sup> Type: C=Co<br>Hydric Soil                                                                              | oncentration, D=Deple                       | etion, RM= | Reduced Matrix, M             | S=Masked    | Sand Gra           | ains.            | <sup>2</sup> Location: PL=Pore Lining<br>Indicators for Problematic |        |  |
| Histosol                                                                                                            |                                             |            | Polyvalue Belo                | w Surface   | (S8) ( <b>I RE</b> | R                | 2 cm Muck (A10) (LRR                                                | -      |  |
|                                                                                                                     | pipedon (A2)                                | -          | MLRA 149B                     |             | (00)(=::::         | ,                | Coast Prairie Redox (A1                                             |        |  |
|                                                                                                                     | stic (A3)                                   | -          | Thin Dark Surfa               |             |                    |                  | 5 cm Mucky Peat or Pea                                              |        |  |
|                                                                                                                     | n Sulfide (A4)<br>Layers (A5)               | -          | Loamy Mucky I<br>Loamy Gleyed |             |                    | , L)             | Dark Surface (S7) (LRR<br>Polyvalue Below Surface                   |        |  |
|                                                                                                                     | d Below Dark Surface                        | (A11)      | Depleted Matrix               |             | )                  |                  | Thin Dark Surface (S9)                                              |        |  |
| ·                                                                                                                   | ark Surface (A12)                           |            | Redox Dark Su                 |             |                    |                  | Iron-Manganese Masses                                               |        |  |
|                                                                                                                     | lucky Mineral (S1)                          | -          | Depleted Dark                 |             | 7)                 |                  | Piedmont Floodplain So                                              |        |  |
|                                                                                                                     | Bleyed Matrix (S4)                          | -          | Redox Depress                 | sions (F8)  |                    |                  | Mesic Spodic (TA6) (ML                                              |        |  |
|                                                                                                                     | edox (S5)                                   |            |                               |             |                    |                  | Red Parent Material (F2                                             |        |  |
|                                                                                                                     | Matrix (S6)<br>rface (S7) ( <b>LRR R, M</b> | LRA 149B   | )                             |             |                    |                  | Very Shallow Dark Surfa<br>Other (Explain in Remar                  |        |  |
|                                                                                                                     |                                             |            |                               |             |                    |                  |                                                                     | -,     |  |
|                                                                                                                     | f hydrophytic vegetati                      | on and wet | land hydrology mus            | st be prese | nt, unless         | disturbed        | or problematic.                                                     |        |  |
| Type: Ha                                                                                                            | <b>_ayer (if observed):</b>                 |            |                               |             |                    |                  |                                                                     |        |  |
| Depth (inc                                                                                                          |                                             |            |                               |             |                    |                  | Hydric Soil Present? Yes                                            | No_X   |  |
| Remarks:                                                                                                            |                                             |            |                               |             |                    |                  |                                                                     |        |  |
|                                                                                                                     |                                             |            |                               |             |                    |                  |                                                                     |        |  |
|                                                                                                                     |                                             |            |                               |             |                    |                  |                                                                     |        |  |
|                                                                                                                     |                                             |            |                               |             |                    |                  |                                                                     |        |  |
|                                                                                                                     |                                             |            |                               |             |                    |                  |                                                                     |        |  |
|                                                                                                                     |                                             |            |                               |             |                    |                  |                                                                     |        |  |
|                                                                                                                     |                                             |            |                               |             |                    |                  |                                                                     |        |  |
|                                                                                                                     |                                             |            |                               |             |                    |                  |                                                                     |        |  |
|                                                                                                                     |                                             |            |                               |             |                    |                  |                                                                     |        |  |
|                                                                                                                     |                                             |            |                               |             |                    |                  |                                                                     |        |  |
|                                                                                                                     |                                             |            |                               |             |                    |                  |                                                                     |        |  |
|                                                                                                                     |                                             |            |                               |             |                    |                  |                                                                     |        |  |
|                                                                                                                     |                                             |            |                               |             |                    |                  |                                                                     |        |  |
|                                                                                                                     |                                             |            |                               |             |                    |                  |                                                                     |        |  |
|                                                                                                                     |                                             |            |                               |             |                    |                  |                                                                     |        |  |
|                                                                                                                     |                                             |            |                               |             |                    |                  |                                                                     |        |  |

| Project/Site: 195601363                                                   | City/County: New Haven / Addison              | Sampling Date: 11/1/2017  |
|---------------------------------------------------------------------------|-----------------------------------------------|---------------------------|
| Applicant/Owner: Vermont Transco, LLC/Vermont Electric Po                 | wer Company State: Vermont                    | _ Sampling Point: Wetland |
| Investigator(s): EDB                                                      | Section, Township, Range:                     |                           |
| Landform (hillslope, terrace, etc.): Floodplain                           | Local relief (concave, convex, none): Linear  | Slope (%): 2-4            |
| Subregion (LRR or MLRA): LRR R Lat: 44.122164                             | Long: <u>-73.158905</u>                       | Datum:NAD83               |
| Soil Map Unit Name:                                                       | NWI classifica                                | tion: PEM                 |
| Are climatic / hydrologic conditions on the site typical for this time of | f year? Yes X No (If no, explain in Re        | marks.)                   |
| Are Vegetation, Soil, or Hydrology significan                             | ntly disturbed? Are "Normal Circumstances" pr | esent? Yes X No           |
| Are Vegetation, Soil, or Hydrology naturally                              | problematic? (If needed, explain any answers  | s in Remarks.)            |

## SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

| Hydrophytic Vegetation Present?<br>Hydric Soil Present?<br>Wetland Hydrology Present? | Yes X No<br>Yes X No<br>Yes X No     | Is the Sampled Area<br>within a Wetland? Yes X No<br>If yes, optional Wetland Site ID: <u>NH-202</u> |
|---------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------|
| Remarks: (Explain alternative proce                                                   | dures here or in a separate report.) |                                                                                                      |
| Significantly Disturbed Notes: A                                                      | .g fields adjacent                   |                                                                                                      |
|                                                                                       |                                      |                                                                                                      |
|                                                                                       |                                      |                                                                                                      |
|                                                                                       |                                      |                                                                                                      |
|                                                                                       |                                      |                                                                                                      |
|                                                                                       |                                      |                                                                                                      |

| Wetland Hydrology Indicators:                                                         | Secondary Indicators (minimum of two required)       |
|---------------------------------------------------------------------------------------|------------------------------------------------------|
| Primary Indicators (minimum of one is required; check all that apply)                 | Surface Soil Cracks (B6)                             |
| Surface Water (A1) Water-Stained Leaves (B9)                                          | Drainage Patterns (B10)                              |
| X High Water Table (A2) Aquatic Fauna (B13)                                           | Moss Trim Lines (B16)                                |
| X Saturation (A3) Marl Deposits (B15)                                                 | Dry-Season Water Table (C2)                          |
| Water Marks (B1) Hydrogen Sulfide Odor (C1)                                           | Crayfish Burrows (C8)                                |
| Sediment Deposits (B2) Oxidized Rhizospheres on Living                                | Roots (C3) Saturation Visible on Aerial Imagery (C9) |
| Drift Deposits (B3) Presence of Reduced Iron (C4)                                     | Stunted or Stressed Plants (D1)                      |
| Algal Mat or Crust (B4) Recent Iron Reduction in Tilled So                            | pils (C6) Geomorphic Position (D2)                   |
| Iron Deposits (B5) Thin Muck Surface (C7)                                             | Shallow Aquitard (D3)                                |
| Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)                  | Microtopographic Relief (D4)                         |
| Sparsely Vegetated Concave Surface (B8)                                               | FAC-Neutral Test (D5)                                |
| Field Observations:                                                                   |                                                      |
| Surface Water Present? Yes <u>No X</u> Depth (inches):                                |                                                      |
| Water Table Present? Yes X No Depth (inches):8                                        |                                                      |
| Saturation Present? Yes X No Depth (inches):0                                         | Wetland Hydrology Present? Yes <u>X</u> No           |
| Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec | tions), if available:                                |
|                                                                                       |                                                      |
|                                                                                       |                                                      |
| Remarks:                                                                              |                                                      |
|                                                                                       |                                                      |
|                                                                                       |                                                      |
|                                                                                       |                                                      |
|                                                                                       |                                                      |
|                                                                                       |                                                      |
|                                                                                       |                                                      |
|                                                                                       |                                                      |
|                                                                                       |                                                      |
|                                                                                       |                                                      |
|                                                                                       |                                                      |

# Sampling Point: Wetland

| Tree Stratum (Plot size: 30'                                         | Absolute | Dominant<br>Species? |      | Dominance Test worksheet:                                                                                         |
|----------------------------------------------------------------------|----------|----------------------|------|-------------------------------------------------------------------------------------------------------------------|
| 1)                                                                   |          |                      |      | Number of Dominant Species<br>That Are OBL_EACW or EAC: 3 (A)                                                     |
| 2                                                                    |          |                      |      |                                                                                                                   |
| 3                                                                    |          |                      |      | Total Number of Dominant<br>Species Across All Strata: <u>3</u> (B)                                               |
| 4                                                                    |          |                      |      | Percent of Dominant Species                                                                                       |
| 5                                                                    |          |                      |      | That Are OBL, FACW, or FAC: 100% (A/B)                                                                            |
| 6                                                                    |          |                      |      |                                                                                                                   |
| 7                                                                    |          |                      |      | Total % Cover of:         Multiply by:                                                                            |
|                                                                      |          | = Total Cov          |      | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                            |
| Sapling/Shrub Stratum (Plot size: 15')                               |          |                      |      | FACW species $125$ x 2 = $250$                                                                                    |
| 1. Sambucus nigra                                                    | 20       | Yes                  | FACW | FAC species <u>5</u> x 3 = <u>15</u>                                                                              |
| 2. Viburnum dentatum                                                 | _        | Yes                  | FAC  | FACU species x 4 =                                                                                                |
| 3                                                                    |          |                      |      | UPL species $0 \times 5 = 0$                                                                                      |
| 4                                                                    |          |                      |      | Column Totals: <u>130</u> (A) <u>265</u> (B)                                                                      |
| 5                                                                    |          |                      |      | Prevalence Index = $B/A = 2.0$                                                                                    |
| 6                                                                    |          |                      |      | Hydrophytic Vegetation Indicators:                                                                                |
| 7                                                                    |          |                      |      | 1 - Rapid Test for Hydrophytic Vegetation                                                                         |
|                                                                      |          | = Total Cov          |      | X 2 - Dominance Test is >50%                                                                                      |
| Herb Stratum (Plot size: 5')                                         |          | - 10(a) COV          | ei   | <u>X</u> 3 - Prevalence Index is $\leq 3.0^1$                                                                     |
|                                                                      | 85       | Yes                  | FACW | 4 - Morphological Adaptations <sup>1</sup> (Provide supporting data in Remarks or on a separate sheet)            |
| <ol> <li>Phalaris arundinacea</li> <li>Epilobium ciliatum</li> </ol> | 10       | No                   | FACW | Problematic Hydrophytic Vegetation <sup>1</sup> (Explain)                                                         |
| 3 Symphyotrichum lanceolatum                                         | 10       | No                   | FACW |                                                                                                                   |
| ·· <u>·</u>                                                          |          |                      |      | <sup>1</sup> Indicators of hydric soil and wetland hydrology must<br>be present, unless disturbed or problematic. |
| 4                                                                    |          |                      |      | Definitions of Vegetation Strata:                                                                                 |
| 5                                                                    |          |                      |      |                                                                                                                   |
| 6                                                                    |          |                      |      | <b>Tree</b> – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.       |
| 7                                                                    |          |                      |      | Sapling/shrub – Woody plants less than 3 in. DBH                                                                  |
| 8                                                                    |          |                      |      | and greater than or equal to 3.28 ft (1 m) tall.                                                                  |
| 9                                                                    |          |                      |      | Herb – All herbaceous (non-woody) plants, regardless of                                                           |
| 10                                                                   |          |                      |      | size, and woody plants less than 3.28 ft tall.                                                                    |
| 11                                                                   |          |                      |      | Woody vines – All woody vines greater than 3.28 ft in                                                             |
| 12                                                                   |          |                      |      | height.                                                                                                           |
| 30'                                                                  | 105      | = Total Cov          | er   |                                                                                                                   |
| Woody Vine Stratum (Plot size: 30')                                  |          |                      |      |                                                                                                                   |
| 1                                                                    |          |                      |      | Hydrophytic                                                                                                       |
| 2                                                                    |          |                      |      | Vegetation                                                                                                        |
| 3                                                                    |          |                      |      | Present? Yes X No                                                                                                 |
| 4                                                                    |          |                      |      |                                                                                                                   |
|                                                                      |          | = Total Cov          | er   |                                                                                                                   |
| Remarks: (Include photo numbers here or on a separate                | sneet.)  |                      |      |                                                                                                                   |
|                                                                      |          |                      |      |                                                                                                                   |
|                                                                      |          |                      |      |                                                                                                                   |
|                                                                      |          |                      |      |                                                                                                                   |
|                                                                      |          |                      |      |                                                                                                                   |
|                                                                      |          |                      |      |                                                                                                                   |
|                                                                      |          |                      |      |                                                                                                                   |
|                                                                      |          |                      |      |                                                                                                                   |

| Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) |                        |            |                    |             |                   |                  |                        |                                                |
|---------------------------------------------------------------------------------------------------------------------|------------------------|------------|--------------------|-------------|-------------------|------------------|------------------------|------------------------------------------------|
| Depth                                                                                                               | Matrix                 |            | Redo               | x Features  | 3                 |                  |                        |                                                |
| (inches)                                                                                                            | Color (moist)          | %          | Color (moist)      | %           | Type <sup>1</sup> | Loc <sup>2</sup> | Texture                | Remarks                                        |
| 0 - 20                                                                                                              | 2.5Y 4/1               | 90         | 7.5YR 4/6          | 10          | С                 | М                | Clay                   |                                                |
|                                                                                                                     |                        |            | , 10 , 0           |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    |             | <u> </u>          |                  | · ·                    |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  | <u> </u>               |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  | · ·                    |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    | ·           |                   |                  | ·                      |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  | ·                      |                                                |
| <sup>1</sup> Type: C=Co                                                                                             | oncentration, D=Depl   | etion, RM= | Reduced Matrix, M  | S=Masked    | Sand Gra          | ains.            | <sup>2</sup> Location: | PL=Pore Lining, M=Matrix.                      |
| Hydric Soil                                                                                                         |                        |            |                    |             |                   |                  |                        | for Problematic Hydric Soils <sup>3</sup> :    |
| Histosol                                                                                                            | (A1)                   |            | Polyvalue Belo     | w Surface   | (S8) ( <b>LRR</b> | R.               | 2 cm Mi                | uck (A10) ( <b>LRR K, L, MLRA 149B</b> )       |
|                                                                                                                     | pipedon (A2)           | -          | MLRA 149B          |             | () (              | ,                |                        | Prairie Redox (A16) ( <b>LRR K, L, R</b> )     |
| Black Hi                                                                                                            |                        |            | Thin Dark Surfa    | ,           | RR R MI           | RA 149B)         |                        | ucky Peat or Peat (S3) ( <b>LRR K, L, R</b> )  |
|                                                                                                                     | en Sulfide (A4)        | -          | Loamy Mucky I      |             |                   |                  |                        | urface (S7) ( <b>LRR K, L, M</b> )             |
|                                                                                                                     | d Layers (A5)          | -          | Loamy Gleyed       |             |                   | -)               |                        | ue Below Surface (S8) (LRR K, L)               |
|                                                                                                                     | d Below Dark Surface   | (Δ11)      | X Depleted Matrix  |             | )                 |                  |                        | ark Surface (S9) (LRR K, L)                    |
| ·                                                                                                                   | ark Surface (A12)      | (~11)      | Redox Dark Su      | • •         |                   |                  |                        | inganese Masses (F12) (LRR K, L, R)            |
|                                                                                                                     | lucky Mineral (S1)     | -          | Depleted Dark      | , ,         | 7)                |                  |                        | nt Floodplain Soils (F19) ( <b>MLRA 149B</b> ) |
|                                                                                                                     | Bleyed Matrix (S4)     | -          | Redox Depress      |             | ()                |                  |                        | Spodic (TA6) (MLRA 144A, 145, 149B)            |
|                                                                                                                     |                        | -          | Redux Depress      | SIULIS (FO) |                   |                  |                        |                                                |
|                                                                                                                     | Redox (S5)             |            |                    |             |                   |                  |                        | rent Material (F21)                            |
|                                                                                                                     | Matrix (S6)            |            | <b>,</b>           |             |                   |                  |                        | nallow Dark Surface (TF12)                     |
| Dark Su                                                                                                             | rface (S7) (LRR R, M   | LRA 149B   | )                  |             |                   |                  | Other (E               | Explain in Remarks)                            |
| 3                                                                                                                   |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     | f hydrophytic vegetati | on and wet | land hydrology mus | st be prese | nt, unless        | disturbed        | or problematic.        |                                                |
| Restrictive I                                                                                                       | Layer (if observed):   |            |                    |             |                   |                  |                        |                                                |
| Туре:                                                                                                               |                        |            |                    |             |                   |                  |                        |                                                |
| Depth (ind                                                                                                          | ches):                 |            |                    |             |                   |                  | Hydric Soil F          | Present? Yes X No                              |
| Remarks:                                                                                                            |                        |            |                    |             |                   |                  | <b>,</b>               |                                                |
| Remarks.                                                                                                            |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  |                        |                                                |
|                                                                                                                     |                        |            |                    |             |                   |                  |                        |                                                |

| Project/Site: 195601363                                                   | City/County: New Haven / Addison Si             | ampling Date: 11/1/2017 |
|---------------------------------------------------------------------------|-------------------------------------------------|-------------------------|
| Applicant/Owner: Vermont Transco, LLC/Vermont Electric Po                 | ower Company State: Vermont                     | Sampling Point: Upland  |
| Investigator(s): EDB                                                      | Section, Township, Range:                       |                         |
| Landform (hillslope, terrace, etc.): Rise                                 | Local relief (concave, convex, none): Convex    | Slope (%): 2-4          |
| Subregion (LRR or MLRA): LRR R Lat: 44.121193                             | B Long: -73.162509                              | Datum: <u>NAD83</u>     |
| Soil Map Unit Name:                                                       | NWI classification                              | on: UPL                 |
| Are climatic / hydrologic conditions on the site typical for this time of | f year? Yes X No (If no, explain in Rem         | narks.)                 |
| Are Vegetation, Soil, or Hydrology significant                            | ntly disturbed? Are "Normal Circumstances" pres | sent? Yes X No          |
| Are Vegetation, Soil, or Hydrology naturally                              | problematic? (If needed, explain any answers i  | in Remarks.)            |

## SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

| Hydrophytic Vegetation Present?<br>Hydric Soil Present? | Yes<br>Yes        | No X<br>No X<br>No X | Is the Sampled Area<br>within a Wetland? | Yes           | No X |
|---------------------------------------------------------|-------------------|----------------------|------------------------------------------|---------------|------|
| Wetland Hydrology Present?                              | Yes               | NO A                 | If yes, optional Wetland Site            | : ID: INE-205 |      |
| Remarks: (Explain alternative procedu                   | ires here or in a | separate report.)    |                                          |               |      |
| Significantly Disturbed Notes: Mo                       | owed field        |                      |                                          |               |      |
|                                                         |                   |                      |                                          |               |      |
|                                                         |                   |                      |                                          |               |      |
|                                                         |                   |                      |                                          |               |      |
|                                                         |                   |                      |                                          |               |      |
|                                                         |                   |                      |                                          |               |      |

| Wetland Hydrology Indicators:                                                                                                                                         | Secondary Indicators (minimum of two required)       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Primary Indicators (minimum of one is required; check all that apply)                                                                                                 | Surface Soil Cracks (B6)                             |
| Surface Water (A1) Water-Stained Leaves (B9)                                                                                                                          | Drainage Patterns (B10)                              |
| High Water Table (A2) Aquatic Fauna (B13)                                                                                                                             | Moss Trim Lines (B16)                                |
| Saturation (A3) Marl Deposits (B15)                                                                                                                                   | Dry-Season Water Table (C2)                          |
| Water Marks (B1) Hydrogen Sulfide Odor (C1)                                                                                                                           | Crayfish Burrows (C8)                                |
| Sediment Deposits (B2) Oxidized Rhizospheres on Living R                                                                                                              | Roots (C3) Saturation Visible on Aerial Imagery (C9) |
| Drift Deposits (B3) Presence of Reduced Iron (C4)                                                                                                                     | Stunted or Stressed Plants (D1)                      |
| Algal Mat or Crust (B4) Recent Iron Reduction in Tilled So                                                                                                            | ils (C6) Geomorphic Position (D2)                    |
| Iron Deposits (B5) Thin Muck Surface (C7)                                                                                                                             | Shallow Aquitard (D3)                                |
| Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)                                                                                                  | Microtopographic Relief (D4)                         |
| Sparsely Vegetated Concave Surface (B8)                                                                                                                               | FAC-Neutral Test (D5)                                |
| Field Observations:                                                                                                                                                   |                                                      |
| Surface Water Present? Yes <u>No X</u> Depth (inches):                                                                                                                |                                                      |
| Water Table Present? Yes <u>No X</u> Depth (inches):                                                                                                                  |                                                      |
|                                                                                                                                                                       |                                                      |
| Saturation Present? Yes <u>No X</u> Depth (inches):                                                                                                                   | Wetland Hydrology Present? Yes No X                  |
|                                                                                                                                                                       |                                                      |
| Saturation Present? Yes <u>No X</u> Depth (inches):<br>(includes capillary fringe)                                                                                    |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect |                                                      |
| Saturation Present? Yes <u>No X</u> Depth (inches):<br>(includes capillary fringe)                                                                                    |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect |                                                      |
| Saturation Present? Yes No X Depth (inches):<br>(includes capillary fringe)<br>Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect |                                                      |

# Sampling Point: Upland

|                                                                        | Absolute       | Dominant    |        | Dominance Test worksheet:                                                                                         |
|------------------------------------------------------------------------|----------------|-------------|--------|-------------------------------------------------------------------------------------------------------------------|
| Tree Stratum (Plot size: 30')                                          | <u>% Cover</u> | Species?    | Status | Number of Dominant Species                                                                                        |
| 1                                                                      |                |             |        | That Are OBL, FACW, or FAC: (A)                                                                                   |
| 2                                                                      |                |             |        | Total Number of Dominant                                                                                          |
| 3                                                                      |                |             |        | Species Across All Strata: <u>3</u> (B)                                                                           |
| 4                                                                      |                |             |        | Percent of Dominant Species                                                                                       |
| 5                                                                      |                |             |        | That Are OBL, FACW, or FAC: <u>33%</u> (A/B)                                                                      |
|                                                                        |                |             |        |                                                                                                                   |
| 6                                                                      |                |             |        | Prevalence Index worksheet:                                                                                       |
| 7                                                                      |                |             |        | Total % Cover of:Multiply by:                                                                                     |
|                                                                        |                | = Total Cov | er     | OBL species x 1 =                                                                                                 |
| Sapling/Shrub Stratum (Plot size: 15')                                 |                |             |        | FACW species X 2 = 60                                                                                             |
| 1                                                                      |                |             |        | FAC species x 3 =                                                                                                 |
| 2                                                                      |                |             |        | FACU species <u>65</u> x 4 = <u>260</u>                                                                           |
|                                                                        |                |             |        | UPL species x 5 =0                                                                                                |
| 3                                                                      |                |             |        | Column Totals: <u>95</u> (A) <u>320</u> (B)                                                                       |
| 4                                                                      |                |             |        | Dravelar as ladar D/A 2.4                                                                                         |
| 5                                                                      |                |             |        | Prevalence Index = B/A = 3.4                                                                                      |
| 6                                                                      |                |             |        | Hydrophytic Vegetation Indicators:                                                                                |
| 7                                                                      |                |             |        | 1 - Rapid Test for Hydrophytic Vegetation                                                                         |
|                                                                        |                | = Total Cov | or     | 2 - Dominance Test is >50%                                                                                        |
| Ligh Strature (Distainer 5'                                            |                | - 10tal 000 |        | 3 - Prevalence Index is ≤3.0 <sup>1</sup>                                                                         |
| <u>Herb Stratum</u> (Plot size: <u>5'</u> )<br>1. Phalaris arundinacea | 30             | Yes         | FACW   | 4 - Morphological Adaptations <sup>1</sup> (Provide supporting data in Remarks or on a separate sheet)            |
| 2. Dactylis glomerata                                                  | 25             | Yes         | FACU   | Problematic Hydrophytic Vegetation <sup>1</sup> (Explain)                                                         |
| · · ·                                                                  | 25             |             |        |                                                                                                                   |
| 3. Taraxacum officinale                                                |                | Yes         | FACU   | <sup>1</sup> Indicators of hydric soil and wetland hydrology must<br>be present, unless disturbed or problematic. |
| 4. Trifolium pratense                                                  | 15             | No          | FACU   |                                                                                                                   |
| 5                                                                      |                |             |        | Definitions of Vegetation Strata:                                                                                 |
| 6                                                                      |                |             |        | Tree – Woody plants 3 in. (7.6 cm) or more in diameter                                                            |
| 7                                                                      |                |             |        | at breast height (DBH), regardless of height.                                                                     |
| 8                                                                      |                |             |        | Sapling/shrub – Woody plants less than 3 in. DBH                                                                  |
|                                                                        |                |             |        | and greater than or equal to 3.28 ft (1 m) tall.                                                                  |
| 9                                                                      |                |             |        | <b>Herb</b> – All herbaceous (non-woody) plants, regardless of                                                    |
| 10                                                                     |                |             | ·      | size, and woody plants less than 3.28 ft tall.                                                                    |
| 11                                                                     |                |             | ·      | <b>Woody vines</b> – All woody vines greater than 3.28 ft in                                                      |
| 12                                                                     |                |             |        | height.                                                                                                           |
|                                                                        | 95             | = Total Cov | er     |                                                                                                                   |
| Woody Vine Stratum (Plot size: 30')                                    |                |             |        |                                                                                                                   |
|                                                                        |                |             |        |                                                                                                                   |
| 1                                                                      |                |             |        | Hydrophytic                                                                                                       |
| 2                                                                      |                |             | ·      | Vegetation<br>Present? Yes No X                                                                                   |
| 3                                                                      |                |             |        | Present? Yes <u>No X</u>                                                                                          |
| 4                                                                      |                |             |        |                                                                                                                   |
|                                                                        |                | = Total Cov | er     |                                                                                                                   |
| Remarks: (Include photo numbers here or on a separate                  | sheet.)        |             |        |                                                                                                                   |
|                                                                        |                |             |        |                                                                                                                   |
|                                                                        |                |             |        |                                                                                                                   |
|                                                                        |                |             |        |                                                                                                                   |
|                                                                        |                |             |        |                                                                                                                   |
|                                                                        |                |             |        |                                                                                                                   |
|                                                                        |                |             |        |                                                                                                                   |
|                                                                        |                |             |        |                                                                                                                   |
|                                                                        |                |             |        |                                                                                                                   |

| Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
|---------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------|----------------------------------|-------------|-------------------|------------------|-----------------|------------------------|----------|-------|----------|
| Depth                                                                                                               | Matrix                       |                                         |                                  | x Feature   | <u>s</u>          |                  |                 |                        |          |       |          |
| (inches)                                                                                                            | Color (moist)                | %                                       | Color (moist)                    | %           | Type <sup>1</sup> | Loc <sup>2</sup> | Texture         |                        | Remar    | ks    |          |
| 0 - 15                                                                                                              | 2.5Y 4/3                     | 100                                     |                                  |             |                   |                  | Clay Loam       |                        |          |       |          |
| 15 - 21                                                                                                             | 2.5Y 4/2                     | 95                                      | 7.5YR 4/6                        | 5           | С                 | М                | Clay Loam       |                        |          |       |          |
| 13-21                                                                                                               | 2.31 4/2                     | 95                                      | 7.511(4/0                        |             | <u> </u>          | 101              |                 |                        |          |       |          |
|                                                                                                                     |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
|                                                                                                                     |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
|                                                                                                                     |                              | ·                                       |                                  |             |                   |                  |                 |                        |          |       |          |
| ·                                                                                                                   |                              |                                         | <u> </u>                         |             |                   |                  |                 |                        |          |       |          |
|                                                                                                                     |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
|                                                                                                                     |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
|                                                                                                                     |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
|                                                                                                                     |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
|                                                                                                                     |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
|                                                                                                                     |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
| ·                                                                                                                   |                              | ·                                       |                                  |             |                   | ·                |                 |                        |          |       |          |
|                                                                                                                     |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
|                                                                                                                     |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
|                                                                                                                     |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
|                                                                                                                     | oncentration, D=Depl         | etion, RM=                              | Reduced Matrix, M                | S=Masked    | Sand Gra          | ains.            |                 | PL=Pore I              |          |       |          |
| Hydric Soil                                                                                                         |                              |                                         |                                  |             |                   | _                | Indicators      |                        |          |       |          |
| Histosol                                                                                                            |                              |                                         | Polyvalue Belov                  |             | (S8) ( <b>LRF</b> | RR,              |                 | uck (A10) (            |          |       | ,        |
|                                                                                                                     | pipedon (A2)                 |                                         | MLRA 149B                        |             |                   | DA 440D)         |                 | Prairie Redo           |          |       |          |
|                                                                                                                     | stic (A3)<br>en Sulfide (A4) |                                         | Thin Dark Surfa<br>Loamy Mucky N |             |                   |                  |                 | ucky Peat ourface (S7) |          |       | L, R)    |
|                                                                                                                     | d Layers (A5)                |                                         | Loamy Gleyed                     |             |                   | , L)             |                 | ue Below S             |          |       |          |
|                                                                                                                     | d Below Dark Surface         | (A11)                                   | Depleted Matrix                  |             | .)                |                  |                 | ark Surface            |          |       | L)       |
|                                                                                                                     | ark Surface (A12)            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Redox Dark Su                    |             |                   |                  |                 | anganese M             |          |       | (. L. R) |
|                                                                                                                     | lucky Mineral (S1)           |                                         | Depleted Dark                    | , ,         |                   |                  |                 | ont Floodpla           |          |       |          |
|                                                                                                                     | Gleyed Matrix (S4)           |                                         | Redox Depress                    |             |                   |                  |                 | Spodic (TA6            |          |       |          |
| Sandy R                                                                                                             | Redox (S5)                   |                                         |                                  |             |                   |                  | Red Pa          | irent Materi           | al (F21) |       |          |
|                                                                                                                     | Matrix (S6)                  |                                         |                                  |             |                   |                  |                 | nallow Dark            |          | TF12) |          |
| Dark Su                                                                                                             | rface (S7) (LRR R, M         | LRA 149B                                | )                                |             |                   |                  | Other (         | Explain in F           | Remarks) |       |          |
| 3                                                                                                                   |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
|                                                                                                                     | f hydrophytic vegetat        | on and we                               | lland hydrology mus              | st be prese | ent, unless       | disturbed        | or problematic. |                        |          |       |          |
|                                                                                                                     | Layer (if observed):         |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
| Туре:                                                                                                               |                              |                                         |                                  |             |                   |                  |                 |                        |          |       | V        |
| Depth (in                                                                                                           | ches):                       |                                         |                                  |             |                   |                  | Hydric Soil     | Present?               | Yes      | No    | <u>X</u> |
| Remarks:                                                                                                            |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
|                                                                                                                     |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
|                                                                                                                     |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
|                                                                                                                     |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
|                                                                                                                     |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
|                                                                                                                     |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
|                                                                                                                     |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
|                                                                                                                     |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
|                                                                                                                     |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
|                                                                                                                     |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
|                                                                                                                     |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
|                                                                                                                     |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
|                                                                                                                     |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
|                                                                                                                     |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
|                                                                                                                     |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
|                                                                                                                     |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
|                                                                                                                     |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
|                                                                                                                     |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |
|                                                                                                                     |                              |                                         |                                  |             |                   |                  |                 |                        |          |       |          |

| Project/Site: 195601363                                                   | City/County: <u>New Haven / Addison</u> s      | Sampling Date: 11/1/2017 |
|---------------------------------------------------------------------------|------------------------------------------------|--------------------------|
| Applicant/Owner: Vermont Transco, LLC/Vermont Electric Por                | wer Company State: Vermont                     | Sampling Point: Wetland  |
| Investigator(s): EDB                                                      | Section, Township, Range:                      |                          |
| Landform (hillslope, terrace, etc.): Dip                                  | Local relief (concave, convex, none): Linear   | Slope (%): 0-2           |
| Subregion (LRR or MLRA): LRR R Lat: 44.121148                             | Long: <u>-73.162609</u>                        | Datum: <u>NAD83</u>      |
| Soil Map Unit Name:                                                       | NWI classificat                                | tion: PEM                |
| Are climatic / hydrologic conditions on the site typical for this time of | year? Yes X No (If no, explain in Rer          | marks.)                  |
| Are Vegetation, Soil, or Hydrology significan                             | ntly disturbed? Are "Normal Circumstances" pre | esent? Yes X No          |
| Are Vegetation, Soil, or Hydrology naturally                              | problematic? (If needed, explain any answers   | in Remarks.)             |

## SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

| Hydrophytic Vegetation Present?<br>Hydric Soil Present?<br>Wetland Hydrology Present? | Yes X No<br>Yes X No<br>Yes X No | Is the Sampled Area<br>within a Wetland? Yes X No<br>If yes, optional Wetland Site ID: NH-203 |
|---------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------|
| Remarks: (Explain alternative proce<br>Significantly Disturbed Notes:                 |                                  |                                                                                               |
|                                                                                       | ·                                |                                                                                               |
|                                                                                       |                                  |                                                                                               |
|                                                                                       |                                  |                                                                                               |

| Wetland Hydrology Indicators:                                                                              | Secondary Indicators (minimum of two required)       |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--|--|--|--|--|--|
| Primary Indicators (minimum of one is required; check all that apply)                                      | Surface Soil Cracks (B6)                             |  |  |  |  |  |  |
| Surface Water (A1) Water-Stained Leaves (B9)                                                               | Drainage Patterns (B10)                              |  |  |  |  |  |  |
| High Water Table (A2) Aquatic Fauna (B13)                                                                  | Moss Trim Lines (B16)                                |  |  |  |  |  |  |
| X Saturation (A3) Marl Deposits (B15)                                                                      | Dry-Season Water Table (C2)                          |  |  |  |  |  |  |
| Water Marks (B1) Hydrogen Sulfide Odor (C1)                                                                | Crayfish Burrows (C8)                                |  |  |  |  |  |  |
| Sediment Deposits (B2) Oxidized Rhizospheres on Living R                                                   | Roots (C3) Saturation Visible on Aerial Imagery (C9) |  |  |  |  |  |  |
| Drift Deposits (B3) Presence of Reduced Iron (C4)                                                          | Stunted or Stressed Plants (D1)                      |  |  |  |  |  |  |
| Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soi                                                | ls (C6) Geomorphic Position (D2)                     |  |  |  |  |  |  |
| Iron Deposits (B5) Thin Muck Surface (C7)                                                                  | Shallow Aquitard (D3)                                |  |  |  |  |  |  |
| Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)                                       | Microtopographic Relief (D4)                         |  |  |  |  |  |  |
| Sparsely Vegetated Concave Surface (B8)                                                                    | FAC-Neutral Test (D5)                                |  |  |  |  |  |  |
| Field Observations:                                                                                        |                                                      |  |  |  |  |  |  |
| Surface Water Present? Yes <u>No X</u> Depth (inches):                                                     |                                                      |  |  |  |  |  |  |
| Water Table Present? Yes <u>No X</u> Depth (inches):                                                       |                                                      |  |  |  |  |  |  |
| Saturation Present? Yes X No Depth (inches):0 (includes capillary fringe)                                  | Wetland Hydrology Present? Yes X No                  |  |  |  |  |  |  |
| Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: |                                                      |  |  |  |  |  |  |
|                                                                                                            |                                                      |  |  |  |  |  |  |
| Demoster                                                                                                   |                                                      |  |  |  |  |  |  |
| Remarks:                                                                                                   |                                                      |  |  |  |  |  |  |
|                                                                                                            |                                                      |  |  |  |  |  |  |
|                                                                                                            |                                                      |  |  |  |  |  |  |
|                                                                                                            |                                                      |  |  |  |  |  |  |
|                                                                                                            |                                                      |  |  |  |  |  |  |
|                                                                                                            |                                                      |  |  |  |  |  |  |
|                                                                                                            |                                                      |  |  |  |  |  |  |
|                                                                                                            |                                                      |  |  |  |  |  |  |
|                                                                                                            |                                                      |  |  |  |  |  |  |
|                                                                                                            |                                                      |  |  |  |  |  |  |
|                                                                                                            |                                                      |  |  |  |  |  |  |

# Sampling Point: Wetland

| Tree Stratum (Plot size: 30'                                    | Absolute<br>% Cover | Dominant In<br>Species? S |     | Dominance Test worksheet:                                                                                                 |  |  |  |
|-----------------------------------------------------------------|---------------------|---------------------------|-----|---------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1                                                               |                     |                           |     | Number of Dominant Species That Are OBL, FACW, or FAC:1 (A)                                                               |  |  |  |
| 2                                                               |                     |                           |     | Total Number of Dominant                                                                                                  |  |  |  |
| 3                                                               |                     |                           |     | Species Across All Strata: 1 (B)                                                                                          |  |  |  |
| 4                                                               |                     |                           |     | Percent of Dominant Species                                                                                               |  |  |  |
| 5                                                               |                     |                           |     | That Are OBL, FACW, or FAC: (A/B)                                                                                         |  |  |  |
| 6                                                               |                     |                           |     | Prevalence Index worksheet:                                                                                               |  |  |  |
| 7                                                               |                     |                           |     | Total % Cover of: Multiply by:                                                                                            |  |  |  |
|                                                                 |                     | = Total Cover             |     | OBL species 0 x 1 = 0                                                                                                     |  |  |  |
| Sapling/Shrub Stratum (Plot size: 15')                          |                     |                           |     | FACW species 100 x 2 = 200                                                                                                |  |  |  |
| 1                                                               |                     |                           |     | FAC species $0 \times 3 = 0$                                                                                              |  |  |  |
| 2                                                               |                     |                           |     | FACU species $0 \times 4 = 0$                                                                                             |  |  |  |
| 3                                                               |                     |                           |     | UPL species $0 \times 5 = 0$                                                                                              |  |  |  |
|                                                                 |                     |                           |     | Column Totals: <u>100</u> (A) <u>200</u> (B)                                                                              |  |  |  |
| 4                                                               |                     |                           |     | Prevalence Index = $B/A = 2.0$                                                                                            |  |  |  |
| 5                                                               |                     |                           |     | Hydrophytic Vegetation Indicators:                                                                                        |  |  |  |
| 6                                                               |                     |                           |     | $\underline{X}$ 1 - Rapid Test for Hydrophytic Vegetation                                                                 |  |  |  |
| 7                                                               |                     |                           |     | X 2 - Dominance Test is >50%                                                                                              |  |  |  |
|                                                                 |                     | = Total Cover             |     | $X$ 3 - Prevalence Index is $\leq 3.0^1$                                                                                  |  |  |  |
| Herb Stratum (Plot size: <u>5'</u> )<br>1. Phalaris arundinacea | 95                  | Yes F                     | ACW | <ul> <li>4 - Morphological Adaptations<sup>1</sup> (Provide supporting data in Remarks or on a separate sheet)</li> </ul> |  |  |  |
| 2. Symphyotrichum lanceolatum                                   | _                   |                           | ACW | Problematic Hydrophytic Vegetation <sup>1</sup> (Explain)                                                                 |  |  |  |
|                                                                 |                     |                           |     |                                                                                                                           |  |  |  |
| 3                                                               |                     |                           |     | <sup>1</sup> Indicators of hydric soil and wetland hydrology must<br>be present, unless disturbed or problematic.         |  |  |  |
| 4                                                               |                     |                           |     | Definitions of Vegetation Strata:                                                                                         |  |  |  |
| 5                                                               |                     |                           |     | Deminions of Vegetation Strata.                                                                                           |  |  |  |
| 6                                                               |                     |                           |     | <b>Tree</b> – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.               |  |  |  |
| 7                                                               |                     |                           |     |                                                                                                                           |  |  |  |
| 8                                                               |                     |                           |     | <b>Sapling/shrub</b> – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.                  |  |  |  |
| 9                                                               |                     |                           |     |                                                                                                                           |  |  |  |
| 10                                                              |                     |                           |     | <b>Herb</b> – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.             |  |  |  |
| 11                                                              |                     |                           |     |                                                                                                                           |  |  |  |
| 12                                                              |                     |                           |     | <b>Woody vines</b> – All woody vines greater than 3.28 ft in height.                                                      |  |  |  |
|                                                                 | 100                 | = Total Cover             |     |                                                                                                                           |  |  |  |
| Woody Vine Stratum (Plot size: 30')                             |                     |                           |     |                                                                                                                           |  |  |  |
| 1                                                               |                     |                           |     |                                                                                                                           |  |  |  |
| 2.                                                              |                     |                           |     | Hydrophytic                                                                                                               |  |  |  |
| 3                                                               |                     |                           |     | Vegetation<br>Present? Yes X No                                                                                           |  |  |  |
|                                                                 |                     |                           |     |                                                                                                                           |  |  |  |
| 4                                                               |                     |                           |     |                                                                                                                           |  |  |  |
| Remarks: (Include photo numbers here or on a separate           | sheet )             | = Total Cover             |     |                                                                                                                           |  |  |  |
| Remarks. (include photo numbers here of on a separate           | sneet.)             |                           |     |                                                                                                                           |  |  |  |
|                                                                 |                     |                           |     |                                                                                                                           |  |  |  |
|                                                                 |                     |                           |     |                                                                                                                           |  |  |  |
|                                                                 |                     |                           |     |                                                                                                                           |  |  |  |
|                                                                 |                     |                           |     |                                                                                                                           |  |  |  |
|                                                                 |                     |                           |     |                                                                                                                           |  |  |  |
|                                                                 |                     |                           |     |                                                                                                                           |  |  |  |
|                                                                 |                     |                           |     |                                                                                                                           |  |  |  |

| SOIL |
|------|
|------|

| Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) |                                      |            |                               |                                  |                                           |                  |                                                                           |       |             |                  |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------|-------------------------------|----------------------------------|-------------------------------------------|------------------|---------------------------------------------------------------------------|-------|-------------|------------------|
| Depth                                                                                                               | Matrix                               |            | Redo                          | x Features                       | <u>s</u>                                  |                  |                                                                           |       |             |                  |
| (inches)                                                                                                            | Color (moist)                        | %          | Color (moist)                 | %                                | Type <sup>1</sup>                         | Loc <sup>2</sup> | Texture                                                                   | Remar | 'ks         |                  |
| 0 - 6                                                                                                               | 2.5Y 4/2                             | 100        |                               |                                  |                                           |                  | Clay Loam                                                                 |       |             |                  |
| 6 - 14                                                                                                              | 2.5Y 4/2                             | 95         | 7.5YR 4/6                     | 5                                | C                                         | Μ                | Clay Loam                                                                 |       |             |                  |
| 14 - 20                                                                                                             | 2.5Y 4/2                             | 90         | 7.5YR 4/6                     | 10                               | С                                         | Μ                | Clay Loam                                                                 |       |             |                  |
|                                                                                                                     |                                      |            |                               |                                  |                                           |                  |                                                                           |       |             |                  |
|                                                                                                                     |                                      |            |                               |                                  |                                           |                  |                                                                           |       |             |                  |
|                                                                                                                     |                                      |            |                               |                                  |                                           |                  |                                                                           |       |             |                  |
|                                                                                                                     |                                      |            |                               |                                  |                                           |                  |                                                                           |       |             |                  |
|                                                                                                                     |                                      |            |                               |                                  |                                           |                  |                                                                           |       |             |                  |
|                                                                                                                     |                                      |            |                               |                                  |                                           |                  |                                                                           |       |             |                  |
|                                                                                                                     |                                      |            |                               |                                  |                                           | ·                |                                                                           |       |             | <u> </u>         |
|                                                                                                                     |                                      |            |                               |                                  |                                           | ·                |                                                                           |       |             |                  |
|                                                                                                                     |                                      |            |                               |                                  |                                           | ·                |                                                                           |       |             | <u> </u>         |
| 1 <del></del>                                                                                                       |                                      |            |                               |                                  |                                           |                  | 21                                                                        |       | N.A taile a | <u> </u>         |
| Hydric Soil                                                                                                         | oncentration, D=Deple<br>Indicators: | etion, RM= | Reduced Matrix, Ma            | 5=Masked                         | Sand Gra                                  | ains.            | <sup>2</sup> Location: PL=Pore<br>Indicators for Proble                   |       |             | s <sup>3</sup> : |
| Histosol                                                                                                            |                                      | -          | Polyvalue Belov               | w Surface                        | (S8) ( <b>LRR</b>                         | R,               | 2 cm Muck (A10)                                                           | -     |             |                  |
| Histic Ep                                                                                                           | pipedon (A2)                         |            | MLRA 149B)                    | )                                |                                           |                  | Coast Prairie Redox (A16) (LRR K, L, R)                                   |       |             |                  |
|                                                                                                                     | stic (A3)                            | -          | Thin Dark Surfa               |                                  |                                           |                  | 5 cm Mucky Peat                                                           |       |             | K, L, R)         |
|                                                                                                                     | n Sulfide (A4)<br>Layers (A5)        | -          | Loamy Mucky M<br>Loamy Gleyed |                                  |                                           | L)               | Dark Surface (S7                                                          |       |             | <b>K</b> I )     |
|                                                                                                                     | d Below Dark Surface                 | (A11)      | X Depleted Matrix             |                                  | )                                         |                  | Polyvalue Below Surface (S8) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) |       |             |                  |
|                                                                                                                     | ark Surface (A12)                    | (,)        | Redox Dark Su                 |                                  |                                           |                  | Iron-Manganese Masses (F12) (LRR K, L, R)                                 |       |             |                  |
|                                                                                                                     | lucky Mineral (S1)                   | -          | Depleted Dark                 | . ,                              |                                           |                  | Piedmont Floodplain Soils (F19) (MLRA 149B)                               |       |             |                  |
| Sandy Gleyed Matrix (S4) Redox Depressions (F8)                                                                     |                                      |            |                               |                                  | Mesic Spodic (TA6) (MLRA 144A, 145, 149B) |                  |                                                                           |       |             |                  |
| Sandy Redox (S5)                                                                                                    |                                      |            |                               | Red Parent Material (F21)        |                                           |                  |                                                                           |       |             |                  |
| Stripped Matrix (S6)                                                                                                |                                      |            |                               | Very Shallow Dark Surface (TF12) |                                           |                  |                                                                           |       |             |                  |
| Dark Surface (S7) (LRR R, MLRA 149B) Other (Explain in Remarks)                                                     |                                      |            |                               |                                  |                                           |                  |                                                                           |       |             |                  |
|                                                                                                                     | f hydrophytic vegetati               | on and wet | land hydrology mus            | st be prese                      | ent, unless                               | disturbed of     | or problematic.                                                           |       |             |                  |
|                                                                                                                     | _ayer (if observed):                 |            |                               |                                  |                                           |                  |                                                                           |       |             |                  |
| Type:<br>Depth (in                                                                                                  | ches):                               |            |                               |                                  |                                           |                  | Hydric Soil Present?                                                      | Yes ) | ХN          | 0                |
| Remarks:                                                                                                            | <u> </u>                             |            |                               |                                  |                                           |                  |                                                                           |       | <u> </u>    | <u> </u>         |
|                                                                                                                     |                                      |            |                               |                                  |                                           |                  |                                                                           |       |             |                  |
|                                                                                                                     |                                      |            |                               |                                  |                                           |                  |                                                                           |       |             |                  |
|                                                                                                                     |                                      |            |                               |                                  |                                           |                  |                                                                           |       |             |                  |
|                                                                                                                     |                                      |            |                               |                                  |                                           |                  |                                                                           |       |             |                  |
|                                                                                                                     |                                      |            |                               |                                  |                                           |                  |                                                                           |       |             |                  |
|                                                                                                                     |                                      |            |                               |                                  |                                           |                  |                                                                           |       |             |                  |
|                                                                                                                     |                                      |            |                               |                                  |                                           |                  |                                                                           |       |             |                  |
|                                                                                                                     |                                      |            |                               |                                  |                                           |                  |                                                                           |       |             |                  |
|                                                                                                                     |                                      |            |                               |                                  |                                           |                  |                                                                           |       |             |                  |
|                                                                                                                     |                                      |            |                               |                                  |                                           |                  |                                                                           |       |             |                  |
|                                                                                                                     |                                      |            |                               |                                  |                                           |                  |                                                                           |       |             |                  |
|                                                                                                                     |                                      |            |                               |                                  |                                           |                  |                                                                           |       |             |                  |
|                                                                                                                     |                                      |            |                               |                                  |                                           |                  |                                                                           |       |             |                  |