vermont electric power company

Substation Inspections Following a Line Trip

Operating Committee Meeting August 30, 2018

Line Trip and Reclose Response

- VELCO has been dispatching a switchmen following a line protection trip event to gather relay targets and fault information, as well as inspect the associated substations
- Nearly all of our substations are now equipped with microprocessorbased protective relays having remote interrogation capabilities
 - Via SCADA can view 3-phase amps and voltages
- Most of the line relay target and fault information automatically retrieved within less than a minute and displayed in the SCADA system
- Very infrequent to find problems within a substation following a line trip event
- Most of our call-outs are related to circuits that serve the subtransmission systems
- Note that quite often we wait for normal business hours to dispatch a switchmen

Line Trip and Reclose Response

- For substations without remote interrogation, we would continue to dispatch a switchmen (Barre, Berlin, Florence, Middlebury, South Hero and Windsor)
- Criteria for patrolling transmission and sub-T lines following "temporary" faults
 - Use of fault distance information
 - Balance 3-phase amps
 - Balanced 3 phase voltages
- For permanent faults, we all work together to expeditiously get the fault information for the field personnel
- Looking for feedback before moving forward with no longer dispatching a switchmen following a line trip

SEL-321 Relay Record

- Example Bennington K6 line
- Function -21/67N
- Element Trip Zone 1, Phase B-Ground
- Distance 12.54 miles

BEN	NINGTON S	SUBSTATION K6	(LINE))	Dat	te: 0	5/15/1	2	Time:	17:45:03.298
#	DATE	TIME	EVENT	LOCAT	GRP	TARGE	TS			
1	05/15/12	16:05:52.630	BG	+12.54	1	INST	ZONE1	EN	G 50	
2	12/13/12	03:42:44.794	AG	+73.97	1	EN				
3	11/14/12	06:23:28.416	AG	+130.1	1	EN				
4	12/06/12	15:42:41.426	AG	+35.64	1	EN				
5	10/24/12	06:45:56.098	ER	\$\$\$\$\$\$	1	EN				
6	06/24/12	16:47:30.305	BG	+27.23	1	INST	ZONE1	EN	ВС	
7	06/11/12	20:18:06.526	ER	\$\$\$\$\$\$	1	EN				
8	04/29/12	16:30:40.673	CG	+176.4	1	EN				
9	02/19/12	14:24:30.556	ER	\$\$\$\$\$\$	1	EN				
10	12/16/12	08:41:21.298	AG	+167.6	1	EN				

BENNINGTON SUBSTATION K6 (LINE)

Date: 05/15/12

Time: 16:05:52.630

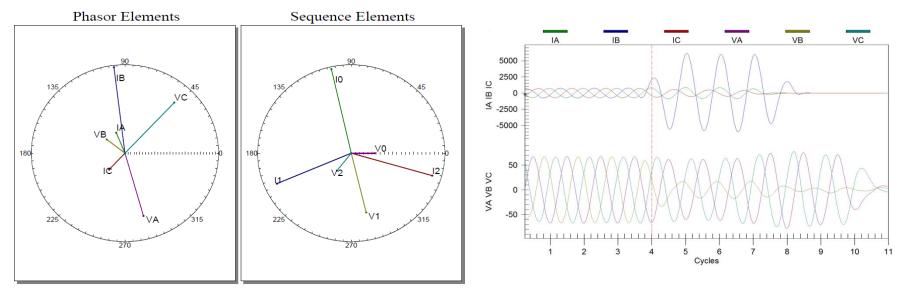
FID=SEL-321-2-R407-V656112p2a-Z001001-D20000721

	CURR	RENTS (pri)		VOLTAC	GES (kV p	ri)	RELAY ELEMENTS	OUT	IN
	IR	IA	IB	IC	VA	VB	VC	ZZZZZZO 555566L ABCABCO 31110770 BCAGGGS 2NQPPNQP	<i>\$</i> 38333	<i>\$</i> 333
-	-2 6 -1 -10	-102 168 101 -169	-91 -180 90 179	191 18 -192 -19	43.0 -51.9 -43.0 51.9	24.2 63.4 -24.2 -63.5	-11.5 67.2	L L L		B B
		43.0 -51.9 -43.0 51.9	24.2 63.4 -24.2 -63.5	-11.5 67.2	L L L		B B			
	-1 5 -2 -8	-102 168 101 -169	-91 -180 90 179	192 17 -193 -18	43.0 -51.9 -43.0 51.9	24.2 63.5 -24.2 -63.5	-11.5 67.2	L L L		B B
98	-1 89 670 -522	-102 157 -2 -139	-91 -91 818 -316	192 23 -146 -67	43.0 -51.1 -41.6 47.1	24.2 59.1 -27.1 -41.7	-11.7 67.5	L L 		В В
290	-1618 823 1853 -808	139 138 -168 -142	-1835 583 2081 -563	78 102 -60 -103	41.1 -44.0 -42.2 43.9	23.7 28.6 -17.2 -28.6	-13.0 68.7	3 QpH1 3 QpH1 1. QpH1 1. QpH1	BB5. BB5.	B B
	-1840 809 1842 -804	166 140 -167 -143	-2065 565 2068 -558	60 103 -59 -103	42.4 -43.8 -42.4 43.7	17.2 28.5 -17.1 -28.5	-13.2 68.6	1. QpH1 1. QpH1 1. QpH1 1. QpH1 1. QpH1	BB5. BB5.	В В
	-1840 762 1334 -433	166 146 -74 -154	-2062 544 1436 -258	56 72 -28 -22	42.4 -44.3 -44.1 51.6	17.1 25.6 -21.1 -9.2	-14.2 68.7	1 QpH1 1 QpH1 1 QpH1 1 QpH1	BB5. BB5.	
	-420 74 6 -1	-18 76 6 0	-401 0 0 -1	-1 -1 0 0	42.4 -59.2 -37.9 60.1	19.8 -4.7 -14.2 1.7	-25.1 72.2	1 QpH 1 QpH Q	BB5. BB5.	
	-2 -1 -1 0	-1 -1 0 0	0 0 -1 0	-1 0 0 0	37.2 -60.7 -37.6 61.2	10.1 17.1 -12.8 -33.0	-18.9 71.9	· · · · · · · · · · · · · · · · · · ·	BB5. BB5.	

- Typical SEL microprocessor relay
 - Relays are synchronized with GPS time clocks
 - Provides voltage and current magnitude with angular relationship, as well as phasor and sequence elements for the Engineer to use

Phasor and Sequence Elements

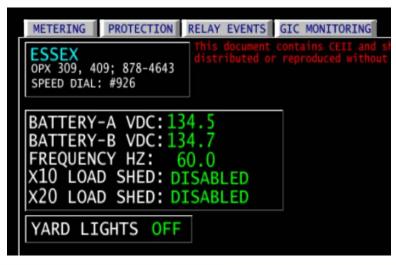
Relay/Terminal ID: ESSEX SUBSTATION K22(LINE)

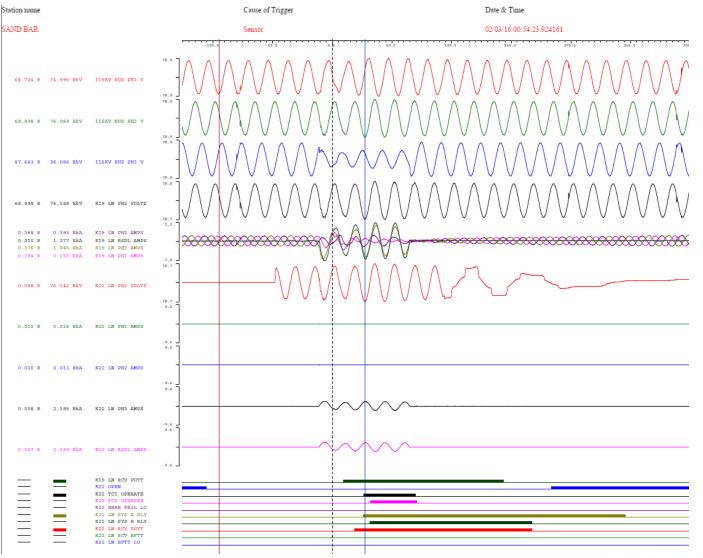

Event date/time: Sunday, September 11, 2016 05:09:35.970000

Printed: 10/4/2016 3:55:25 PM

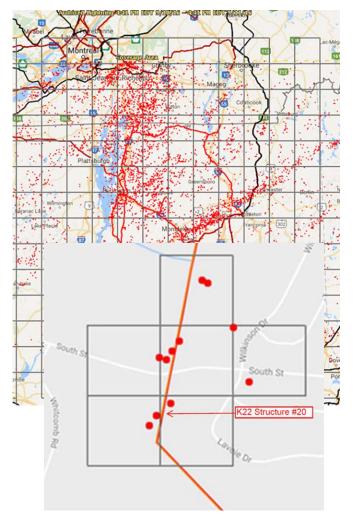
Event Report File= L:\Diana\Ops Cycle Training\2016-9-11-K22 and K19\ESX K22 SEL321 EVE _1 2016-9-11.CEV Cycles: 5.000000

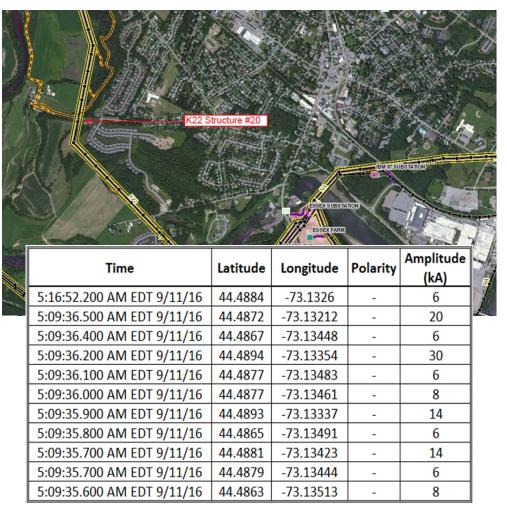
Reference Phase: A

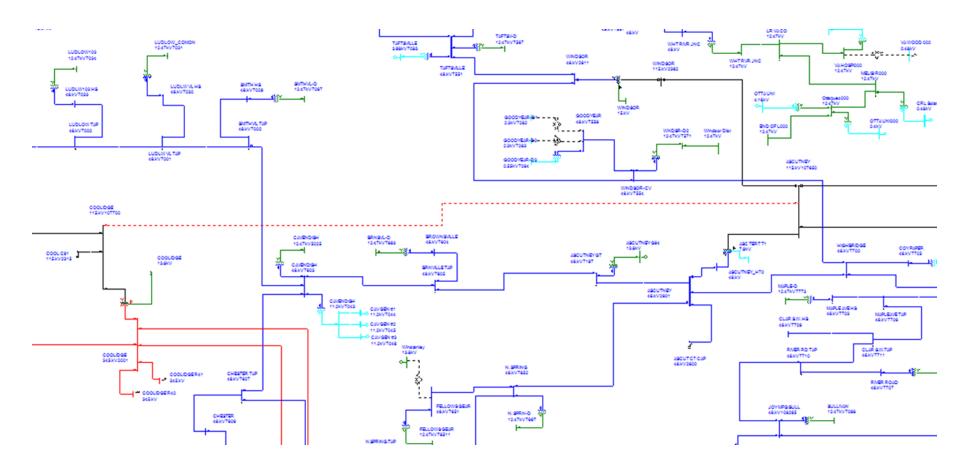

Channel IR	<u>Mag</u> 6592.8	Angle 102.6	Scale	Show 0	Ref
IA	858.6	112.0	1	1	
IB	6099.7	96.9	1	1	
IC	564.8	227.6	1	1	
VA	59.7	285.6	1	1	
VB	17.8	141.4	1	1	
VC	63.1	47.3	1	1	
10	2197.6	102.6	1	1	
I1	1950.7	203.5	1	1	
12	2029.5	343.6	1	1	
V0	15.0	0.0	1	1	1
V1	46.4	283.4	1	1	
V2	15.7	232.1	1	1	


VELCO Automatic Retrieval of Relay Event Information

- Protective relay event data provides improved situational awareness following a transmission or subtransmission line trip event
 - Relay targets
 - Fault type and phases involved
 - Relay element that operated, e.g. instantaneous or time delayed, highspeed communication-aided, overcurrent, stepped distance with zone, SOTF and line differential
 - Relay calculated fault distance
- Information can be viewed on the SCADA "Relay Events" display




• DFR data – Feb 3, 2016 Essex to Sand Bar K22 event


- Schneider DTN Weather Sentry® Lightning Detection
 - Accuracy of detection network 0.09-0.12 miles

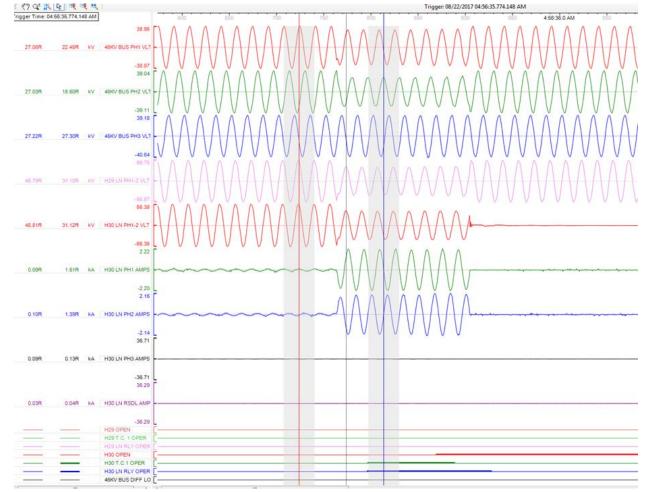
- ASPEN OneLiner[™] short circuit and relay coordination program
 - Widely used in North America

Blissville H30 (W. Rutland line) 8/22/2017 operation

- Total line mileage = 12.49 miles
- Fault distance provided by Blissville relay = 10.27 miles

BLISSVILLE RELAY EVENTS SUMMARY																	
	ZONE																
	epoch	msec				GND	TRIP	DIST(mi)	Inst	TIME	Comm	SOTF	87L	50/51			
к7	07/31/17 01:	41:38.420			С	GND		10.69									
SEL_321	07/19/17 11:	34:00.650	А			GND		33.86									
09/12/17	07/18/17 08:	39:52.400		В		GND		33.41									
11:41	06/07/17 12:	06:05.613		В		GND		14.87									
к34	07/25/15 04:	22:33.156		В		GND		43.70									
SEL_321	09/09/99 05:	09:00.565			С	GND		0.63	INST					OC	Z1		
09/12/17	09/09/99 05:	09:00.041			С	GND		22.63									
11:41	09/09/99 05:	09:00.814	А			GND		11.35									
н76	08/22/17 04:		А	В				0.00									
SEL_321	08/12/17 16:							0.00									
09/12/17	08/04/17 16:							0.00									
11:41	07/31/17 01:							0.00									
н29	09/12/17 06:							0.00									
SEL_311C								0.00									
09/12/17	08/31/17 08:							0.00									
11:41	08/30/17 07:	52:26.365						0.00				•			•		2
н30	08/22/17 04:	56:45.888						0.00									
SEL_311C	08/22/17 04:	56:35.788	А	В			TR	10.27							Z1		
09/12/17	07/25/17 14:	12:06.313						0.00									
11:41	07/25/17 07:	51:17.919						0.00							•		

Blissville H30 (W. Rutland line) 8/22/2017 operation


• DFR record provides phase voltage and current values

Fault Voltage

- Ph1 = 22.42kV
- Ph2 = 18.06kV
- Ph3 = 27.25kV Fault Current
- Ph1 = 1,490A
- Ph2 = 1,410A
- Ph3 = 130A
- Residual = 40A

Pre-fault Current

- Ph1 = 90A
- Ph2 = 100A
- Ph3 = 90A
- Residual = 30A

Blissville H30 (W. Rutland line) 8/22/2017 operation

- Three phase amps were verified balanced
- Recorded in the Operator's event database

BLISSV	/ILLE				BLISSVILL	E METER SU	JMMARY				
	MWATT	MVAR	AMPS1	AMPS2	AMPS3	VOLTS1	VOLTS2	VOLTS3	THD1	THD2	THD3
115кv											
к34	-14.7	8.1	75.4	84.4	91.1	66.9	67.0	67.2	1.8	1.9	1.8
к7	4.6	-9.5	43.6	54.0	61.5	66.9	67.0	67.2	1.8	1.9	1.8
PST	4.4	-7.1									
46KV											
н29	5.3	0.2	60.1	70.2	68.6	26.7	26.7	26.8	1.6	1.8	1.6
н30	4.5	1.1	55.9	61.0	57.9	26.7	26.8	26.8	1.6	1.8	1.6
н76	-9.9	-1.2	115.2	130.7	125.8	26.7	26.7	26.8	1.6	1.8	1.6

Blissville Metering Display

• Three phase amps were verified balanced

8.5 Automatic Breaker Operations Resulting in a Successful Reclose

In the interest of public safety the System Operator will, given available information (e.g. Historical data from PI, three phase amps and volts as indicated on SCADA or from field personnel, neighboring VDU or LCC knowledge), determine if a possible concern for public safety exists. A possible indication may be an imbalance of three phase amps of >15% on transmission assets (greater tolerance for imbalance is accepted on lightly loaded, load serving, and lower voltage lines). This imbalance may indicate an open circuit or high impedance fault condition. VELCO Engineering or other support staff may provide more information as requested by the Operator. If it is determined that a public safety condition exists, the line may need to be deenergized. Notify ISO-NE and any affected BA, LCC, or VDU, prior to opening the line if possible or immediately thereafter.

8.6 Automatic Breaker Operations resulting in a Permanent Fault

8.6.3 Under 115kV

During normal business hours, make verbal notifications to the contacts below. During non-business, hours make email notifications to the contacts below:

- ✤ Operations
- Engineering

If the affected VDU(s) requests assistance in locating the fault, verbally notify to the engineering contact above and request he or she attempt to determine the fault distance, fault type, and phase(s) involved.

