K42 Asset Condition Project

Franklin County Line Upgrade

vermont electric power company

St. Albans Select Board

June 6, 2022

Mission, Vision & Values

Our mission

VELCO's mission is to serve as a trusted partner.

Our vision

VELCO's vision is to create a sustainable Vermont through our people, assets, relationships and operating model.

Our values

VELCO values people, safety, sustainability, creativity and great work.

To live our values we...

- Treat everyone with respect.
- Respond with urgency and care.
- Unconditionally support and empower one another.
- Share information.
- Think outside the box.

VELCO Background

- Formed in 1956 as nation's first statewide, "transmission-only" company
- Owned by 17 local electric utilities and a public benefits corporation
- For-profit company with cooperative revenue structure
- Assets managed assets include \$1.2 billion electric transmission grid consisting of:
 - 738 miles of transmission lines
 - 1500 miles of fiber optic communication network
 - Statewide Radio System
 - 13,000 acres of rights-of-way
 - 55 substations, switching stations, and terminal facilities

K42 Line Overview

- Constructed in 1958; majority of 212 structures are original build
- 115 kV wood H-frame line from Highgate to Highgate Converter Tap to St Albans Tap to Georgia (16.6 miles)
- Main transmission path for HVDC Converter and wind generation toward load center (Burlington)
- Significant wetlands, crop farming, and long access routes drive need for substantial matting

Identified K42 Deficiencies

- 146 (~70%) out of 212 structures to be replaced in the near term
 - Pole and cross arm damage:
 - Woodpecker holes
 - Cracks, splitting, rotting wood
 - Leaning poles
 - Reaching end of asset life
- Additional future structure replacements as needed
 - Reevaluation every 8 years

Examples of rotted pole tops

Examples of woodpecker damage

Examples of poles splitting

Examples of target practice damage

K42 line very difficult to take out of service

- System topology and load/gen balance are problematic
 - Outages result in radial supply almost 100 miles long
 - Loss of Northern Loop load post-contingency (15% of VT peak, nearly all of Vermont Electric Coop's service territory)
 - Portions of structure work disconnect St. Albans Tap
 - Exposure to low voltage post-contingency
 - Several resources switched off during outages
 - Highgate converter 97% capacity factor
 - Wind plants High generation except in the summer
 - K42 outages potentially can restrict planned outages in Vermont, Southern NH, and Central MA

Proposed solution: Rebuild K42 as single-pole line

- More efficient construction minimizes mobilizations
- Maintains the existing line in service during construction
 - Avoids approximately 30 daily outages and their consequences
- Steel structures lower ongoing maintenance costs and future replacements
- Meets current VELCO line design standard
- Creates space in key ROW for a future line if needed by region
- What conductor size?
 - 1351 ACSS
 - 2515 ACSR
 - Double 1272 ACSR
 - (lower reactance & higher charging current)

Project Value/Cost Summary

- Addresses asset condition need with minimal disruptions
- New single-pole line
 - More efficient construction
 - Avoids outages and associated generation lost revenue and reliability impacts
 - No interference with other planned outages
 - Lowers maintenance cost and structure replacement frequency
 - Optimizes utilization of the ROW
- Bundle conductors
 - Reduce PTF losses by 50% and LMP impacts
 - Improves system strength
 - Improves reactive margin
 - Addresses current export constraints
 - Facilitates renewable energy growth by about 20 MW
 - Avoids Vermont lost opportunity cost for SHEI improvement

Project milestones

- Received ISO-NE support on costs (January 2022)
- Discussions with VDUs & DPS (March-April 2022)
 - Studying cost/benefit analysis for single pole and double conductor investments
- Commenced draft line design (April 2022)
 - Increased fiber optic capacity
 - Field walk down in July/August
- Beginning environmental and aesthetic assessments (May 2022)
- Public outreach/ stakeholder engagement (April 2022 2023)
- VSPC update (April 2022)
 - NTA screening to follow
- Construction cost quotes (August 2022)
- Permitting process (2023)
- Construction and removal of old line (2024-2025)

Natural & Cultural Resource Surveys

A	VELCO Gate	 Proposed Matted Road		Mapbook She	et	88	Wetland Buffer (VELCO)	Franklin County L	ine Upgrade Proje
•	Private Well	 ATV Trail	HH	Archaeologica	al Site		VCGI Stream	K-42 11	5 kV Line
0	Water Supply Well	 Proposed Overland Travel		Stream (VELC	0)	22	100 Year Flood Zone	Natural & Cultu	ral Resource Map
•	Transmission Line Structure	 Proposed Stone Road		RTE (VELCO)			Property Line	vermont electric	power company
8.8.8	VAST Trails	 Transmission Line	****	Wetland Exter	nds (VELCO		Towns		
	Proposed Cut / Fill Road	 Edge of ROW		Wetland (VEL	CO)				
				0	100	200	400	Date: 5/16/2022	Page 18 of
							Eeet	201700000000000000000000000000000000000	i age ie ei

Natural & Cultural Resource Surveys

Access & Landowners

<u>Data Collection</u> \rightarrow Reports \rightarrow Permitting

Hydric Soil Present? Yes O No 🖲 Wetland Hydrology Present? narks: (Explain alternative procedures here or in a separate report.)

Hydrology

Wetland Hydrology Indicators:									
Primary Indicators (minimum of one required; check all that apply)									
Surface Water (A1)	Water-Stained Leaves (B9)								
High Water Table (A2)	Aquatic Fauna (B13)								
Saturation (A3)	Marl Deposits (B15)								
Water Marks (B1)	Hydrogen Sulfide Odor (C1)								
Sediment Deposits (B2)	Oxidized Rhizospheres along Living Roots (
Drift deposits (B3)	Presence of Reduced Iron (C4)								
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Solis (C6)								
Iron Deposits (B5)	Thin Muck Surface (C7)								
Inundation Visible on Aerial Imagery (87)	Other (Explain in Remarks)								
Sparsely Vegetated Concave Surface (B8)									

Secondary Indicators (minimum of 2 required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1)

US Army Corps of Engineers

lemarks

